首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fabrication of micropatterned structures on PDMS is a critical step in soft lithography, microfluidics, and many other PDMS-based applications. To substitute traditional mold-casting methods, we develop a simple method to create micropatterned nanostructures on PDMS in one step. After exposing a flat PDMS surface to a UV pen lamp through a photomask (such as a TEM grid), micropatterned nanostructures can be formed readily on the PDMS surface. We also demonstrate that fabricated PDMS can be used for the microcontact printing of protein immunoglobulin (IgG) on solid surfaces. This method is probably the simplest method of creating micropatterned nanostructures on PDMS reported so far because it does not need casting, surface coating, or chemical reagents. Only a UV pen lamp and a photomask are required, and this method can be performed under ambient conditions without vacuum. We expect that this method will greatly benefit researchers who use PDMS regularly in various applications such as soft lithography and microfluidics.  相似文献   

2.
Surface-attached micropattemed polyelectrolyte brushes on planar solid surfaces are generated using free radical polymerization photo-initiated by self-assembled initiator monolayers. It is shown that the formed patterns can be either negative or positive with different patterning processes.  相似文献   

3.
Langmuir-Blodgett assembly of graphite oxide single layers   总被引:2,自引:0,他引:2  
Single-layer graphite oxide can be viewed as an unconventional type of soft material and has recently been recognized as a promising material for composite and electronics applications. It is of both scientific curiosity and technical importance to know how these atomically thin sheets assemble. There are two fundamental geometries of interacting single layers: edge-to-edge and face-to-face. Such interactions were studied at the air-water interface by Langmuir-Blodgett assembly. Stable monolayers of graphite oxide single layers were obtained without the need for any surfactant or stabilizing agent, due to the strong electrostatic repulsion between the 2D confined layers. Such repulsion also prevented the single layers from overlapping during compression, leading to excellent reversibility of the monolayers. In contrast to molecular and hard colloidal particle monolayers, the single layers tend to fold and wrinkle at edges to resist collapsing into multilayers. The monolayers can be transferred to a substrate, readily creating a large area of flat graphite oxide single layers. The density of such films can be continuously tuned from dilute, close-packed to overpacked monolayers of interlocking single layers. For size-mismatched single layers, face-to-face interaction caused irreversible stacking, leading to double layers. The graphite oxide monolayers can be chemically reduced to graphene for electronic applications such as transparent conducting thin films.  相似文献   

4.
An alternative method for fabricating functionalized, atomic force microscopy (AFM) tips is presented. This technique is simple and requires only minimal preparation and tip modification to generate chemically sensitive probes that have a robust organic monolayer of flexible terminal chemistry attached to the surface. Specifically, commercially microfabricated Si3N4 AFM tips were modified with self-assembled monolayers (SAMs) of octadecyltrichlorosilane and (11-bromoundecyl)trichlorosilane after removing the native silicon oxide surface layer with concentrated hydrofluoric acid. The structure of these SAM films on solid silicon nitride surfaces was studied using contact angle goniometry and Fourier transform infrared spectroscopy. Pull-off force measurements on various bare (mica, graphite, and silicon) and SAM-functionalized substrates confirm that mechanically robust, long-chain organic silane SAMs can be formed on HF-treated Si3N4 tips without the presence of an intervening oxide layer. Adhesion experiments show that the integrity of the organic film on the chemically modified tips is maintained over repeated measurements and that the functionalized tips can be used for chemical sensing experiments since strong discrimination between different surface chemistries is possible.  相似文献   

5.
The possibility of using surface-adsorbed monolayers on oxidized GaAs single crystals is investigated to explore liquid crystal (LC) wettability and alignment. A technological process is developed to chemically activate the GaAs surface with a view to perform the infiltration of tunable two-dimensional (2-D) photonic crystals with LC materials. We demonstrate a vapor growth method to fabricate self-organized monolayers of carboxylated derivatives on plasma-activated surfaces. Our monolayers strongly increase the wettability of liquid crystal surfaces and may be helpful in achieving the infiltration of 2-D GaAs photonic crystals. Two types of molecular families were studied in this work: benzoic acids and fatty acids. Para-substituted benzoic acids with a wide range of electrical dipoles allow adsorption to be followed by measuring the surface potential of the grafted substrates using the Kelvin probe technique. These model compounds yield important information on the grafting conditions and the stability of the layers. Surface-adsorbed fatty acids are well-known to produce hydrophobic surfaces. The water contact angles measured on modified GaAs surfaces are equivalent to the ones measured on classical alkanethiol layers on gold.  相似文献   

6.
The sensitivities of infrared spectra of thin adsorbate layers measured in either transmission, internal reflection or external reflection can be greatly increased if a light incidence medium with a high refractive index such as an IR-transparent solid material is used. This increase in sensitivity is due to the strong enhancement of the perpendicular electric field in a thin layer of low refractive index sandwiched between two high refractive index materials. Based on model calculations of a hypothetical sample layer, the influence and optimization of experimental parameters such as incidence angle, sample layer thickness and optical contact between layers are investigated. Under optimized conditions, this enhancement can exceed a factor of 100 when compared to conventional surface IR techniques. In addition, the spectra of sandwiched sample layers are governed by a uniform surface selection rule, such that only the perpendicular vibrational components are enhanced, and they permit a straightforward, substrate-independent analysis of surface orientations. Experimental examples of monolayer spectra of long-chain hydrocarbon compounds adsorbed onto gold and silicon substrates and contacted with a germanium crystal used as the incidence medium demonstrate the simple experimental realization and unprecedented sensitivity of this sandwich technique, and they offer novel insights into the chemistry and structure of monolayers confined and compressed between two solid surfaces. Figure IR reflection spectrum of a monolayer of a fatty acid methyl ester sandwiched between silicon and germanium.  相似文献   

7.
Combining inkjet printing and atom-transfer radical polymerization (ATRP) provides a straightforward and versatile method for producing patterned polymer surfaces that may serve as platforms for a variety of applications. We report the use of drop-on-demand technology to print binary chemical gradients and simple patterns onto solid substrates and, by using surface-confined ATRP, amplify these patterns and gradients. Chemically graded monolayers prepared by inkjet printing dodecanethiol and backfilling with 11-mercaptoundecanol showed continuous changes in the water contact angle along the gradient. These samples also exhibited a distinct change in the intensity of methyl group and C-O stretching modes along the gradient. Graded or patterned polymer layers were produced by growing, with ATRP, tethered poly(methyl methacrylate) (PMMA) layers from gradient or patterned printed monolayers that contained a bromo-capped initiator. Atomic force microscopy and optical microscopy confirmed that the PMMA layers amplified the underlying printed initiator layer with remarkable fidelity.  相似文献   

8.
Phospholipid liposomes (100-200 nm diameter) are deposited onto solid substrates after stabilizing them against fusion with the solid by allowing charged nanoparticles to adsorb at approximately 25% surface coverage. The immobilized vesicles remain stable over a period of days. Epifluorescence imaging shows that they diffuse freely over surfaces with the same charge but adsorb tightly onto surfaces with opposite charge. Nanoparticle adsorption to surface patterns of opposite charge provides a facile method to create large-scale surface-supported arrays of intact liposomes. This surface attachment method is simple chemically and applies generally for solid surfaces that can be hydrophobic or hydrophilic. Offering routes to localize proteins and other vesicle-contained objects at surfaces in tailored spatial patterns, these immobilized liposome arrays may find diverse applications in the emerging field of nanobiotechnology.  相似文献   

9.
A scheme is presented for the construction of coordination nanostructures on oxide surfaces (glass, Si/SiO2, quartz), based on application of epoxy-terminated monolayers as anchors for covalent grafting of ligands. Two ligands bearing amine groups were reacted with epoxysilane monolayers on oxide surfaces, providing ligand-terminated substrates. The ligands employed were (i) a pyridine moiety, used for subsequent binding of cobalt tetraphenylporphine (CoTPP), and (ii) deferoxamine (DFX), which contains hydroxamic acid moieties, used for subsequent construction of various Zr4+-based coordination layers. The results suggest that a dense ligand layer was obtained in both cases, allowing the formation of coordination overlayers on the oxide surfaces. The growth of coordinated layers was similar to analogous overlayers assembled on Au substrates, indicating that high ligand coverage is achieved by the epoxy-amine surface reaction. Epoxy-based functionalization of oxide substrates is a mild and efficient method for preparing high-quality coordination overlayers. Moreover, the method makes use of commercially available silane and amine reactants, providing the basis for wide application.  相似文献   

10.
Thin liquid film instabilities driven by van der Waals forces and in the proximity of soft elastomeric layers are considered in this work through two model problems: (i) a liquid film resting on an elastomeric layer and (ii) a liquid film bounded from one side by a rigid substrate and from the other side by an elastomeric layer. The elastomeric layers are modeled as linear viscoelastic solids, van der Waals forces are assumed to act only in the liquid, and lubrication theory and linear stability analysis are applied. For a liquid film resting on an elastomeric layer, substrate deformability has a destabilizing effect, as evidenced by an increase in the maximum growth rate and range of unstable wavenumbers. The destabilization worsens for thicker solid layers and is due to a lowering of the effective liquid-air interfacial tension. For an elastomeric layer resting on a liquid film, layer deformability has a stabilizing effect for thin layers but a destabilizing effect for thicker layers, with the former due to an enhancement and the latter due to a reduction of the effective solid-air interfacial tension. The results presented here suggest the possibility of exploiting the dewetting of thin liquid films to create topographically patterned surfaces on soft polymeric solids.  相似文献   

11.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

12.
The adsorption of a biologically important glycoprotein, mucin, and mucin-chitosan complex layer formation on negatively charged surfaces, silica and mica, have been investigated employing ellipsometry, the interferometric surface apparatus, and atomic force microscopy techniques. Particular attention has been paid to the effect of an anionic surfactant sodium, dodecyl sulfate (SDS), with respect to the stability of the adsorption layers. It has been shown that mucin adsorbs on negatively charged surfaces to form highly hydrated layers. Such mucin layers readily associate with surfactants and are easily removed from the surfaces by rinsing with solutions of SDS at concentrations > or =0.2 cmc (1 cmc SDS in 30 mM NaCl is equal to 3.3 mM). The mucin adsorption layer is negatively charged, and we show how a positively charged polyelectrolyte, chitosan, associates with the preadsorbed mucin to form mucin-chitosan complexes that resist desorption by SDS even at SDS concentrations as high as 1 cmc. Thus, a method of mucin layer protection against removal by surfactants is offered. Further, we show how mucin-chitosan multilayers can be formed.  相似文献   

13.
Compared to two‐dimensional substrates, only a few methodologies exist for the spatially controlled decoration of three‐dimensional objects, such as microparticles. Combining electrohydrodynamic co‐jetting with synthetic polymer chemistry, we were able to create two‐ and three‐patch microparticles displaying chemically orthogonal anchor groups on three distinct surface patches of the same particle. This approach takes advantage of a combination of novel chemically orthogonal polylactide‐based polymers and their processing by electrohydrodynamic co‐jetting to yield unprecedented multifunctional microparticles. Several micropatterned particles were fabricated displaying orthogonal click functionalities. Specifically, we demonstrate novel two‐ and three‐patch particles. Multi‐patch particles are highly sought after for their potential to present multiple distinct ligands in a directional manner. This work clearly establishes a viable route towards orthogonal reaction strategies on multivalent micropatterned particles.  相似文献   

14.
A new method of making physically self-assembled monolayers (PSAMs) on hydrophilic solid surfaces is presented. This method uses a mixture of a nonpolar solvent, such as hexane, and a strong polar solvent, such as ethanol, to dissolve the lipids. The deposition of two lecithin lipids, dipalmitoylphosphatidylcholine (DPPC) and dilauroylphosphatidylcholine (DLPC), has been studied. These lipids physically self-assemble, or adsorb, onto hydrophilic silicon oxide/silicon surfaces when such surfaces are in contact with the lipid solution. The adsorbed layers were probed with ex-situ attenuated total reflection infrared (ATR-IR) spectroscopy, ellipsometry, contact angle measurements, and atomic force microscopy (AFM). The thicknesses of the adsorbed monolayers are about 2.8 +/- 0.2 nm for DPPC and 2.0 +/- 0.2 nm for DLPC, as determined by ellipsometry and AFM. Smooth, uniform monolayers of controlled surface density are formed. The surface density of adsorbed layers is comparable to those of close-packed lipid monolayers, as calculated from the ellipsometry and ATR-IR results. Producing controlled-thickness monolayers has applications in boundary lubrication, biomaterials, sensor technologies, and electronics. The method can be used for depositing many biological surfactants or lipids without the need to modify these surfactants chemically to form chemical bonds with the surfaces, as required by the usual chemical SAMs. Moreover, the new method has several advantages compared to the Langmuir-Blodgett (LB) method.  相似文献   

15.
Bifunctional surfaces are micropatterned using a self‐aligned, dual‐purpose lithographic mask and pairs of conformally deposited iCVD polymers. A first layer is deposited, then physically masked and etched in oxygen plasma. A second layer is deposited with the mask still in place. Lift‐off reveals the micropatterned surface. The thicknesses of the two layers are independently controlled so that the resultant surface displays both chemical and topographical contrast. The patterning scheme is independent of the polymers used and order of deposition. We use this scheme to create surfaces that spatially confine microcondensation, as well as chemical functionality. We also demonstrate microwells whose depth can be altered in response to a water stimulus.

  相似文献   


16.
A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.  相似文献   

17.
A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer‐by‐layer technique on a silicon oxide surface modified with a 3‐aminopropyltriethoxysilane (APTES) monolayer. The surface pKa value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer‐by‐layer assembly. Micropatterned polyelectrolyte films were obtained by deep‐UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm2 s?1 in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.  相似文献   

18.
This paper describes the adsorption and spreading of beta-cyclodextrin (CD) vesicles on hydrophobic and hydrophilic substrates, which involves a transition from bilayer vesicles to planar molecular monolayers or bilayers. On substrates that are patterned with self-assembled monolayers by microcontact printing (muCP), the CD vesicles preferentially adsorb on hydrophobic areas instead of hydrophilic (nonionic) areas, and on cationic areas instead of hydrophilic (nonionic) areas. Supported monolayers of amphiphilic cyclodextrins CD1 and CD2 were obtained by adsorption of CD vesicles to hydrophobic substrates, and supported bilayers of amphiphilic cyclodextrins CD1 and CD2 were prepared by adsorption of CD vesicles on cationic substrates. Contact angle goniometry, atomic force microscopy and confocal fluorescence microscopy (CFM) were used to analyze the supported CD layers. The fluidity of the supported CD layers was verified using fluorescence recovery after photobleaching experiments. The supported layers function as a supramolecular platform that can bind suitable guest molecules through inclusion in the CD host cavities. Additionally, the CD host layers were patterned with fluorescent guest molecules by supramolecular muCP on the supported CD layers. The host-guest interactions were investigated with CFM and fluorescence resonance energy transfer experiments.  相似文献   

19.
The surfaces of fumed silica materials were modified with a surface sol-gel process for catalysis applications. This surface-modification approach allows not only a monolayer growth of TiO(2) or Al(2)O(3) but also a stepwise double-layer growth of TiO(2)/TiO(2), Al(2)O(3)/Al(2)O(3), TiO(2)/Al(2)O(3), or Al(2)O(3)/TiO(2) on the surfaces of the silica materials with a monolayer precision. XRD analyses revealed that the coated monolayers and double layers of TiO(2) and Al(2)O(3) were amorphous. Gold nanoparticles were successfully deposited on the above six surface-modified silica materials via a deposition-precipitation method. The catalytic activities of these six gold catalysts for CO oxidation are highly dependent on the structures of their surface monolayers or double layers. The gold catalyst supported on the silica material functionalized with a TiO(2) monolayer (Au/TiO(2)) is the most active in both as-synthesized and oxidized forms, while the gold catalyst supported on the silica material functionalized with an Al(2)O(3)/TiO(2) double layer (Au/Al(2)O(3)/TiO(2)/SiO(2)) is the most active in the reduced form among the six catalysts. Surprisingly, the gold catalyst supported on the silica material functionalized with a TiO(2)/Al(2)O(3) double layer (Au/TiO(2)/Al(2)O(3)/SiO(2)) has much less activity than Au/Al(2)O(3)/TiO(2)/SiO(2) under all various treatments, underscoring the sensitivity of the catalytic activity to the structure of the supporting surfaces.  相似文献   

20.
The nonlinear evolution of thin liquid films dewetting near soft elastomeric layers is examined in this work. Evolution equations are derived by applying the lubrication approximation and assuming that van der Waals forces in the liquid cause the dewetting and that the solid can be described as a linear viscoelastic material. Two cases are examined: (i) a liquid layer resting on an elastomer bounded from below by a rigid substrate, and (ii) an elastomer overlying a thin liquid film bounded from below by a rigid substrate. Linear stability analysis is carried out to obtain asymptotic relations which are then compared against solutions of the full characteristic equations. In the liquid-on-solid case, numerical solutions of the evolution equations show that van der Waals forces cause thinning of the liquid film and thickening of the elastomeric solid beneath film depressions. Inclusion of a short-range repulsive force suggests that regular patterns may form in which ridges of fluid rest on depressions in the solid. In the solid-on-liquid case, the van der Waals forces cause the solid layer to break up before the liquid film can dewet. The results presented here support the idea that the dewetting of thin liquid films might be exploited to create topographically patterned surfaces on soft polymeric solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号