首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun D  Cao R  Sun Y  Bi W  Li X  Wang Y  Shi Q  Li X 《Inorganic chemistry》2003,42(23):7512-7518
The hydrothermal reactions of AgNO(3), 4,4'-bipy, and carboxylate ligands gave rise to three supramolecular architectures, namely [Ag(bipy)].H(2)SIPA.1/2bipy.H(2)O (1), [Ag(bipy)].1/2H(2)btec.H(2)O (2), and [Ag(bipy)](2).H(2)dpstc.2H(2)O (3) (H(3)SIPA = 5-sulfoisophthalic acid, bipy = 4,4'-bipyridine, H(4)btec = 1,2,4,5-benzenetetracarboxylic acid, H(4)dpstc = 3,3',4,4'-tetracarboxydiphenyl sulfone). All complexes are extended from Ag-bipy linear chains by the combination of coordination bonds and supramolecular interactions in two different approaches. Complexes 1 and 3 comprise two-dimensional frameworks. In the two complexes, a one-dimensional ladderlike structure is first formed by the connection of a Ag-bipy chain through hydrogen bonding between a free carboxylate/bipy ligand and weak coordinative interactions between a free carboxylate ligand and silver ion. The ladderlike structure is then extended to a two-dimensional layer architecture by pi...pi interactions between bipy ligands of the Ag-bipy chains. Complex 2 possesses a three-dimensional framework. The free H(2)btec(2)(-) ligands form a two-dimensional layer network by hydrogen-bonding interactions between protonated and deprotonated carboxylate groups; meanwhile, pi.pi interactions between bipy ligands of Ag-bipy chains also result in a two-dimensional layer. The two layers are further connected by weak Ag-O interactions to generate a three-dimensional supramolecular structure.  相似文献   

2.
The complexation properties of the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) towards group 11 metals have been studied. The reaction in a 1 : 1 molar ratio with [Cu(NCMe)4]PF6 or Ag(OTf) complexes gives the mononuclear [CuL(NCMe)]PF6 (1), with crystallographic mirror symmetry, or dinuclear [Ag2(mu-L)2](OTf)2 (2) (OTf = trifluoromethanesulfonate) in which the ligand bridges both silver centres, an unprecedented mode of coordination for this type of ligands. Compound 2 crystallizes with two water molecules and forms a supramolecular structure through classical hydrogen bonding. The reaction in a 2 : 1 ratio affords in both cases the four-coordinated derivatives [ML2]X (M = Cu, X = PF6 (3); Ag, X = OTf 4). The treatment of [Ag(OTf)(PPh3)] with the ligand L gives [AgL(PPh3)]OTf (5). The gold(I) derivative [Au2(C6F5)2(mu-L)] (6) has also been obtained by reaction of L with two equivalents of [Au(C6F5)(tht)]. These complexes present a luminescent behaviour at low temperature; the emissions being mainly intraligand but enhanced after coordination of the metal. Compounds 1-4 have been characterized by X-ray crystallography. DFT studies showed that, in the silver complex 2, coordination of H2O to Ag in the binuclear complex is favoured by formation of a hydrogen-bonding network, involving the triflato anion, and releasing enough energy to allow distortion of the Ag2 framework.  相似文献   

3.
The new ligand Ph(2)(O)POCH(2)C(pz)(3) (pz = pyrazolyl ring), prepared from the reaction of HOCH(2)C(pz)(3) and Ph(2)P(O)Cl in the presence of base, reacts with either AgBF(4) or Fe(BF(4))(2).6H(2)O in a 2/1 molar ratio to yield {[Ph(2)(O)POCH(2)C(pz)(3)](2)Ag}(BF(4)) () and {[Ph(2)(O)POCH(2)C(pz)(3)](2)Fe}(BF(4))(2) (), respectively. In the structure of , the silver is in an unusual planar geometry with each of the ligands in a kappa(2)-kappa(0) coordination mode. Slow evaporation of a thf solution of yields crystalline [Ph(2)(O)POCH(2)C(pz)(3)Ag](2)(thf)(2)}(BF(4))(2) (). In each cationic unit of , the two Ph(2)(O)POCH(2)C(pz)(3) ligands coordinate to the same two silver(i) centers in a kappa(2)-kappa(1) bonding mode, with a silver atom separation of 3.36 A. The supramolecular structure of both and is dominated by a pair of cooperative hydrogen bonding interactions between the Ph(2)P(O) secondary tecton and a hydrogen atom from a methylene group situated on a neighboring building block, which arranges the cations in chains. The reaction of HC(pz)(3) and AgO(3)SCF(3) (AgOTf) yields {[HC(pz)(3)](2)Ag(2)}(OTf)(2) (). The cationic unit in has a structure very similar to that of , but with a much shorter distance between the silver atoms at 2.86 A. The supramolecular structure of is dominated by an unusual pyrazolyl embrace interaction where the acceptor ring in the C-Hpi interaction is the pyrazolyl ring kappa(1)-bonded to silver in the adjacent dimeric unit rather than the other ring in a kappa(2)-bonded Cpz(2) unit. This interaction arranges the cations in chains which are further organized into sheets by the triflate anions that link the chains via combined AgO/CHO interactions. The iron in is octahedral with each tris(pyrazolyl)methane unit in the kappa(3)-tripodal coordination mode. The supramolecular structure is sheets formed by hydrogen bonding between the Ph(2)P(O) oxygen and a meta-position hydrogen on one of the diphenylphosphine rings from an adjacent cation.  相似文献   

4.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

5.
The activation of the P=C bond of phosphaalkenes with electrophiles is investigated as a means to prepare and characterize unusual organophosphorus compounds. Treatment of RP=CHtBu (1a: R=tBu; 1b: R=1-adamantyl) with HOTf (0.5 equiv) affords diphosphiranium salts [RP-CHtBu-PR (CH(2)tBu)]OTf ([2a]OTf and [2b]OTf), each containing a three-membered P(2)C ring. In contrast, the addition of MeOTf (0.5 equiv) to either 1a or 1b affords diphosphetanium salts [RP-CHtBu-P(Me)R-CHtBu]OTf ([3a]OTf and [3b]OTf) containing four-membered P(2)C(2) heterocycles. The phosphenium triflate [tBuP(CH(2)tBu)]OTf ([5a]OTf) and methylenephosphonium triflate [tBu(Me)P=CHtBu]OTf ([7a]OTf) are identified spectroscopically as intermediates in the formation of [2a](+) and [3a](+), respectively. The phosphenium triflate intermediate can be trapped with 2-butyne to afford phosphirenium salt [MeC=CMe-tBuPCH(2)tBu]OTf ([6a]OTf). Treatment of diphosphetanium [3a]OTf with an excess MeOTf affords [Me(2)P-CHtBu-PMetBu-CHtBu](OTf)(2) ([4a](OTf)(2)), a compound containing a diphosphetanium dication. The molecular structures are reported for [2a]OTf, [2b][H(OTf)(2)], [3a]I, [3b]I, [4a](OTf)(2), and [6a]OTf.  相似文献   

6.
Linear gold(I) and silver(I) complexes with the ferrocenyl phosphine FcCH2PPh2 [Fc = (eta5-C5H5)Fe(eta5-C5H4)] of the types [AuR(PPh2CH2Fc)], [M(PPh3)(PPh2CH2Fc)]OTf, and [M(PPh2CH2Fc)2]OTf (M = Au, Ag) have been obtained. Three-coordinate gold(I) and silver(I) derivatives of the types [AuCl(PPh2CH2Fc)2] and [M(PPh2CH2Fc)3]X (M = Au, X = ClO4; M = Ag, X = OTf) have been obtained from the corresponding gold and silver precursors in the appropriate molar ratio, although some of them are involved in equilibria in solution. The crystal structures of [AuR(PPh2CH2Fc)] (R = Cl, C6F5), [AuL(PPh2CH2Fc)]OTf (L = PPh3, FcCH2PPh2), [Au(C6F5)3(PPh2CH2Fc)], and [Ag(PPh2CH2Fc)3]OTf have been determined by X-ray diffraction studies.  相似文献   

7.
Ruthenium nitrosyl complexes containing the Kl?ui's oxgyen tripodal ligand L(OEt)(-) ([CpCo{P(O)(OEt)(2)}(3)](-) where Cp = η(5)-C(5)H(5)) were synthesized and their photolysis studied. The treatment of [Ru(N^N)(NO)Cl(3)] with [AgL(OEt)] and Ag(OTf) afforded [L(OEt)Ru(N^N)(NO)][OTf](2) where N^N = 4,4'-di-tert-butyl-2,2'-bipyridyl (dtbpy) (2·[OTf](2)), 2,2'-bipyridyl (bpy) (3·[OTf](2)), N,N,N'N'-tetramethylethylenediamine (4·[OTf](2)). Anion metathesis of 3·[OTf](2) with HPF(6) and HBF(4) gave 3·[PF(6)](2) and 3·[BF(4)](2), respectively. Similarly, the PF(6)(-) salt 4·[PF(6)](2) was prepared by the reaction of 4·[OTf](2) with HPF(6). The irradiation of [L(OEt)Ru(NO)Cl(2)] (1) with UV light in CH(2)Cl(2)-MeCN and tetrahydrofuran (thf)-H(2)O afforded [L(OEt)RuCl(2)(MeCN)] (5) and the chloro-bridged dimer [L(OEt)RuCl](2)(μ-Cl)(2) (6), respectively. The photolysis of complex [2][OTf](2) in MeCN gave [L(OEt)Ru(dtbpy)(MeCN)][OTf](2) (7). Refluxing complex 5 with RNH(2) in thf gave [L(OEt)RuCl(2)(NH(2)R)] (R = tBu (8), p-tol (9), Ph (10)). The oxidation of complex 6 with PhICl(2) gave [L(OEt)RuCl(3)] (11), whereas the reduction of complex 6 with Zn and NH(4)PF(6) in MeCN yielded [L(OEt)Ru(MeCN)(3)][PF(6)] (12). The reaction of 3·[BF(4)](2) with benzylamine afforded the μ-dinitrogen complex [{L(OEt)Ru(bpy)}(2)(μ-N(2))][BF(4)](2) (13) that was oxidized by [Cp(2)Fe]PF(6) to a mixed valence Ru(II,III) species. The formal potentials of the RuL(OEt) complexes have been determined by cyclic voltammetry. The structures of complexes 5,6,10,11 and 13 have been established by X-ray crystallography.  相似文献   

8.
In this paper, ten new silver compounds, namely [Ag(bipy)](L1).H2O (1), [Ag(bipy)](L2).2H2O (2), [Ag2(bipy)2(H2O)2](L3).H2O (3), [Ag(L4)(bipy)].H2O (4), [Ag(L5)(bipy)] (5), [Ag(L6)(bipy)].0.5CH3CN (6), [Ag3(L7)2(bipy)2].2(H2O) (7), [Ag2(L8)(bipy)1.5(H2O)].H2O (8), [Ag2(L9)(bipy)2(H2O)2] (9) and [Ag3(L10)(bipy)2][(bipy)(H2O)2].(H2O)3.5 (10) (where bipy = 4,4'-bipyridine, L1 = 6-amino-1-naphthalenesulfonate anion, L2 = 2-naphthalenesulfonate anion, L3 = sulfosalicylate anion, L4 = p-aminobenzenesulfonate anion, L5 = 4-dimethyaminoazobenzenen-4'-sulfonate anion, L6 = 2,5-dichloro-4-amino-benzenesulfonate anion, L7 = 8-hydroxyquinoline-5-sulfonate anion, L8 = 2-nitroso-1-naphthol-4-sulfonate anion, L9 = 2,6-naphthalenedisulfonate anion and L10 = 1,3,5-naphthalenetrisulfonate anion), have been synthesized and characterized by elemental analyses, IR spectroscopy and X-ray crystallography. In compounds 1-6, Ag(I) centers are linked by bipy ligands to form 1D Ag-bipy chain structures, in which the sulfonate anions of compounds 1-3 act as counter ions. The sulfonate anions of compounds 4 and 5 connect Ag-bipy chains to form 1D double chain structures, respectively. The sulfonate anions of compound 6 connect Ag-bipy chains to form a 2D layer structure. Unexpectedly, compound 7 shows a hinged chain structure, and these chains interlace with each other through hydrogen bonds and pi-pi interactions to generate a 3D structure with channels along the c axis. Compounds 8 and 9 show 1D ladder-like structures. In compound 10, the Ag-bipy chains are connected by sulfonate anions to generate a 3D poly-threaded network, in which an isolated Ag-bipy chain is inserted. The results indicate that the anionic sulfonate-containing co-ligands play an important role in the final structures of the Ag(I) complexes. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

9.
The treatment of FcCOCl (Fc = (C5H5)Fe(C5H4)) with aminobenzimidazole in 1:1 or 2:1 ratio gives the ferrocenyl-amido derivatives FcCO(benzimNH2) or (FcCO)2(NHbenzim), respectively. The reactivity of FcCO(benzimNH2) with silver or gold complexes has been studied. The reaction with the basic gold compounds [Au(acac)(PPh3)] or [O(AuPPh3)3]ClO4 occurs with deprotonation of the NH2 group and coordination of one or three gold(phosphine) fragments. The treatment of this ligand with silver compounds, such as Ag(OTf) or [Ag(OTf)(PPh3)], gives the complexes of stoichiometry [Ag(OTf)L] or [Ag(OTf)(PPh3)L]. The ligand FcCO(benzimNH2) and the complex [Ag(OTf){FcCO(benzimNH2)}(PPh3)] have been characterized by X-ray diffraction studies. DFT calculations were performed on models of this dimeric silver complex and showed that dimerization is energetically favourable, because Ag(I) achieves a four coordination environment, despite some bonds being relatively weak.  相似文献   

10.
Treatment of [n-Bu4N][Ru(N)Cl4] with [AgL(OEt)] (L(OEt)- = [(eta5-C5H5)Co{P(O)(OEt)2}3]-) afforded the ruthenium(VI) nitrido complex [L(OEt)Ru(N)Cl2] (1), which reacted with PPh3 to give the ruthenium(IV) phosphiniminato complex [L(OEt)Ru(NPPh3)Cl2] (2). The cyclic voltammogram of 2 displays the RuIV/III couple at ca. 0 V vs ferrocenium/ferrocene. Treatment of 1 with Me3NO afforded [LOEtRu(NO)Cl2] (3), which reacted with Ag(OTf) (OTf- = triflate) to give the chloro-bridged tetranuclear ruthenium/silver complex [L(OEt)Ru(NO)Cl2]2[Ag(OTf)]2 (4). Treatment of 1 with Na2S2O3 gave the thionitrosyl complex [L(OEt)Ru(NS)Cl2] (5). The solid-state structures of 1-4 have been established by X-ray crystallography.  相似文献   

11.
The mononuclear complexes [Ag(H2L1)(Py)2](NO3) x H2O (1, H2L1 = 2,6-bis(5-methyl-1H-pyrazol-3-yl)pyridine) and [Ag(NO3)(L()] (2, L2 = 2,6-bis(5-methyl-1-isopropyl-1H-pyrazol-3-yl)pyridine), dinuclear complex [Ag2(H2L3)2(HL4)2] (3, H2L3 = 2,6-bis(5-phenyl-1H-pyrazol-3-yl)pyridine, HL4 = 6-(5-phenyl-1H-pyrazolyl-3-yl)picolinate), one-dimensional polymer {[Ag2(H2L1)2](NO3)2 x H2O}(n) (4), and hexanuclear clusters [Ag6(HL1)4](X)2 (X = NO3-, 5 ; BF4-, 6 ; ClO4-, 7) stabilized by pincer-like bispyrazolyl ligands have been prepared and characterized using (1)H NMR spectroscopy, elemental analysis, IR spectroscopy, luminescence spectroscopy and X-ray diffraction. In complex , there is a ligand unsupported Ag-Ag bond between the two silver atoms. Complex displays a one-dimensional polymer consisting of an infinite Ag-Ag chain and every two adjacent silver ions are bridged by an H2L1 ligand. Complexes and have the same Ag6 cores in which six silver atoms are held together by four HL1 and five Ag-Ag bonds, while complex was held together by six Ag-Ag bonds. The silver-silver distances in these complexes are found in the range of 2.874(1)-3.333(2) A for ligand supported, and 3.040(1) A for ligand unsupported Ag-Ag bonds, respectively. Complexes 3-7 are strongly luminescent due to either intraligand or metal-ligand charge transfer processes.  相似文献   

12.
meso-Phenyldipyrromethene acetylacetonato copper(II) complexes [Cu(dpm-C6H4R)(acac)] (dpm-C6H4R = phenyl-substituted dipyrromethene, acac = acetylacetonato) with different substituents R at the phenyl moiety were synthesized. These substituents determine the mode of assembly into polymeric chains, namely, via hydrogen bonds, coordinative bonds, or covalent bonds (by immobilization on a polymer). Although the primary coordination sphere around the copper center is essentially identical for all complexes reported in this study (square-planar geometry with N2O2 coordination), subtle differences due to the different microenvironments have been observed in their structures, properties, and reactivity as probed by IR spectroscopy, electron paramagnetic resonance spectroscopy, magnetic measurements, thermal analyses, density functional theory calculations, and reaction with pyridine.  相似文献   

13.
Chiral tungsten(IV) aqua-oxo-alkyne complexes, [Tp'W(O)(H2O)(RC identical to CR)][OTf] (R = H (1); R = Me (2)); (Tp' = hydridotris(3,5-dimethylpyrazolyl)borate; OTf = trifluoromethanesulfonate), have been prepared by halide abstraction from iodide precursors. These cationic complexes have been characterized with triflate as the counteranion. The tautomeric dihydroxo isomer has not been observed. The neutral triflate adduct Tp'W(O)(OTf)(HC identical to CH) (3) has also been isolated. Cationic complexes 1 and 2 undergo deprotonation and isomerization when exposed to Al2O3 to give the dioxo-vinyl compounds Tp'W(O)2(CH=CH2) (6) and Tp'W(O)2[C(Me)=C(H)(Me)] (7), reflecting the conversion of the WIV(OH)(RC identical to CR) fragment to WVI(=O)(RC=CHR). The presumed intermediates, neutral oxo-hydroxo compounds Tp'W(O)(OH)(RC identical to CR) (R = H (9); R = Me (10)), can be accessed by deprotonation of 1 or 2 with NaOH. Conversion of 9 to 6 was achieved thermally upon heating at 100 degrees C for 2 days. X-ray structural data have provided solid-state structures of both the cationic aqua complex 2 and the dioxo-vinyl complex 6.  相似文献   

14.
以Hpda[3-(3-吡啶基)乙烯酸]为配体、AgNO_3为金属源,常温下合成了一个新颖的Ag配合物[Ag_2(pda)_2(H_2O)_3]n.通过往AgNO_3和Hpda的悬浊液中滴加氨水,室温下随着氨水的挥发澄清液中析出无色的晶体,所得产物经红外、XRD及热重表征.该分子中含有2个Ag中心,每个Ag中心通过pda配体及Ag—Ag键相连形成花生形状的一维链,该链进一步被Ag—Ag键连接形成双链结构.游离的水分子之间相互作用形成二维层状水簇,呈有趣的L4(4)12(8)形状.水分子与pda配体中的羧基氧通过氢键相互作用,将一维双链延伸成三维网络结构.  相似文献   

15.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

16.
Resorcinarene tetraphosphinite ligands, P4, react with silver(I) trifluoroacetate or silver(I) triflate, AgX, to give the corresponding [Ag4X4(P4)] complexes. The resorcinarene skeleton in these complexes adopts a boat conformation with the silver(I) phosphinite units on the horizontal, rather than the upright, arene units of the resorcinarene. The [Ag4X4(P4)] complexes react with free P4 ligand to yield the [Ag2X2(P4)] or [AgX(P4)] complexes, which are characterized in solution by NMR spectroscopy to have a conformation opposite to that of the [Ag4X4(P4)] complexes; the silver(I) phosphinite groups are on the upright arene rings of the resorcinarene "boat" instead of the horizontal arene units. There is an easy equilibrium between these complexes. When X = triflate, the [Ag4X4(P4)] complexes disproportionate and add aqua ligands during slow crystallization to give "capsule complexes", which are characterized crystallographically as [Ag10(O3SCF3)10(OH2)6(P4)2], [Ag10(O3SCF3)6(OH2)8(P4)2][O3SCF3]4, or [Ag13(O3SCF3)13(OH2)7(P4)2] depending on the resorcinarene tetraphosphinite ligand P4 used. These unusual capsule complexes are formed by the tail-to-tail self-assembly of pairs of [Ag4(P4)]4+ units linked by additional silver ions that bind to the phenyl substituents of one resorcinarene through {Ag(eta2-C6H5)}+ binding and to the bridging triflate ligands, aqua ligands, or both of the other resorcinarene unit.  相似文献   

17.
Seward C  Chan J  Song D  Wang S 《Inorganic chemistry》2003,42(4):1112-1120
The reaction of AgX, where X = trifluoroacetate (CF(3)CO(2)(-), tfa), nitrate (NO(3)(-)), trifluoromethanesulfonate (triflate, CF(3)SO(3)(-), OTf), hexafluorophosphate (PF(6)(-)), or perchlorate (ClO(4)(-)), with 2,2',3' '-tripyridylamine (tpa) yields five novel silver(I) complexes, which have been structurally characterized. The five complexes have the same 1:1 stoichiometry of Ag/tpa but exhibit different modes of coordination, depending upon the counterion present in the compound. Compound 1, [Ag(tpa)(tfa)](n)(), forms a 1D coordination polymer of [Ag(tpa)(tfa)](2) dimer units linked through bridging tfa counterions. Compound 2, [Ag(tpa)(CH(3)CN)(NO(3))](n), forms a zigzag chain 1D coordination polymer exclusively through Ag-N bonds. In compounds 1 and 2, each tpa ligand is bound to two Ag(I) ions via a 2-py and a 3-py group. Compound 3, [Ag(tpa)(OTf)](n), forms a ribbonlike 1D coordination polymer, in which each tpa ligand binds to three different silver centers via all three pyridyl groups, and the counterion remains coordinated to the Ag(I) center. Compounds 4, [Ag(tpa)(CH(3)CN)](n)(PF(6))(n), and 5, [Ag(tpa)(CH(3)CN)](n)() (ClO(4))(n), display ribbonlike structures resembling that of 3, except that the counterions are not coordinated. All complexes are luminescent in acetonitrile solution, with emission maxima in the near-UV region (lambda(max) = 366, 368, 367, 367, and 368 nm for 1-5, respectively). At 77 K, the emission maxima are red-shifted to lambda(max) = 452, 453, 450, 450, and 454 nm for 1-5, respectively.  相似文献   

18.
The [Fe(II)(H(3)L)](BF(4))(2).3H(2)O (1) complex was synthesized, where H(3)L (tris[[2-[(imidazole-4-yl)methylidene]amino]ethyl]amine) is a tripodal ligand obtained by condensation of tris(2-aminoethyl)amine and 4-formylimidazole (fim) in a 1:3 molar ratio. Starting from 1, a series of complexes, [Fe(II)(H(1.5)L)](BF(4))(0.5) (2) (=[Fe(II)(H(3)L)][Fe(II)(L)]BF(4)), [Fe(H(1.5)L)]BF(4) (3) (=[Fe(II)(H(3)L)][Fe(III)(L)](BF(4))(2)), [Fe(III)(H(3)L)](BF(4))(3).fim.H(2)O (4), and [Fe(III)(L)].2.5H(2)O (5), has been synthesized and characterized. The single-crystal X-ray structure of each complex has been determined. The Fe(II) compound, 2, and a mixed valence Fe(II)-Fe(III) compound, 3, involve formally hemi-deprotonated ligands, H(1.5)L. The structure of 3 consists of a homochiral two-dimensional assembled sheet, arising from the intermolecular hydrogen bonds between [Fe(II)(H(3)L)](2+) and [Fe(III)(L)](0) (3). All but 5 exhibit spin crossover between low-spin (LS) and high-spin (HS) states. This is a rare case where both Fe(II) and Fe(III) complexes containing the same ligand exhibit spin-crossover behavior. Magnetic susceptibility and M?ssbauer studies showed that 3 has three accessible electronic states: LS Fe(II)-LS Fe(III), HS Fe(II)-LS Fe(III), and HS Fe(II)-HS Fe(III). Compounds 1-3 show the light-induced excited spin-state trapping effect at the Fe(II) sites upon irradiation with green light. The solution magnetic properties, electronic spectra, and electrochemical properties of 1, 4, and 5 were also studied.  相似文献   

19.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

20.
Two pro-ligands ((R)LH) comprised of an o,p-di-tert-butyl-substituted phenol covalently bonded to a benzimidazole ((Bz)LH) or a 4,5-di-p-methoxyphenyl substituted imidazole ((PhOMe)LH), have been structurally characterised. Each possesses an intramolecular O-H[dot dot dot]N hydrogen bond between the phenolic O-H group and an imidazole nitrogen atom and (1)H NMR studies show that this bond is retained in solution. Each (R)LH undergoes an electrochemically reversible, one-electron, oxidation to form the [(R)LH] (+) radical cation that is considered to be stabilised by an intramolecular O...H-N hydrogen bond. The (R)LH pro-ligands react with M(BF(4))(2).H(2)O (M = Cu or Zn) in the presence of Et(3)N to form the corresponding [M((R)L)(2)] compound. [Cu((Bz)L)(2)] (), [Cu((PhOMe)L)(2)] (), [Zn((Bz)L)(2)] and [Zn((PhOMe)L)(2)] have been isolated and the structures of .4MeCN, .2MeOH, .2MeCN and .2MeCN determined by X-ray crystallography. In each compound the metal possesses an N(2)O(2)-coordination sphere: in .4MeCN and .2MeOH the {CuN(2)O(2)} centre has a distorted square planar geometry; in .2MeCN and .2MeCN the {ZnN(2)O(2)} centre has a distorted tetrahedral geometry. The X-band EPR spectra of both and , in CH(2)Cl(2)-DMF (9 : 1) solution at 77 K, are consistent with the presence of a Cu(ii) complex having the structure identified by X-ray crystallography. Electrochemical studies have shown that each undergo two, one-electron, oxidations; the potentials of these processes and the UV/vis and EPR properties of the products indicate that each oxidation is ligand-based. The first oxidation produces [M(II)((R)L)((R)L )](+), comprising a M(ii) centre bound to a phenoxide ((R)L) and a phenoxyl radical ((R)L ) ligand; these cations have been generated electrochemically and, for R = PhOMe, chemically by oxidation with Ag[BF(4)]. The second oxidation produces [M(II)((R)L )(2)](2+). The information obtained from these investigations shows that a suitable pro-ligand design allows a relatively inert phenoxyl radical to be generated, stabilised by either a hydrogen bond, as in [(R)LH] (+) (R = Bz or PhOMe), or by coordination to a metal, as in [M(II)((R)L)((R)L )](+) (M = Cu or Zn; R = Bz or PhOMe). Coordination to a metal is more effective than hydrogen bonding in stabilising a phenoxyl radical and Cu(ii) is slightly more effective than Zn(II) in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号