首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparative chromatographic resolution of racemates has become over the past few years a standard approach for the generation of enantiomers in pharmaceutical research and development. This paper will discuss the chromatographic resolution of a racemic pharmaceutical intermediate. Initial analytical method development to determine the best preparative conditions will be presented. Batch resolution of kg quantities of racemate followed by the simulated moving bed resolution of tens and hundreds of kg of racemate will also be discussed. Finally the different approaches used for the separation will be compared.  相似文献   

2.
Several important figures of merit (migration time, efficiency, resolution, resolution per unit time, and electrophoretic selectivity) are quantitatively compared for the first time for conventional CZE and dual-opposite-injection CZE (DOI-CZE). Aspects of DOI-CZE relevant to the separation of organic and pharmaceutical ions (MW>120 Da) are also discussed. Two new approaches to resolve the codetection of anions and cations, hydrodynamic flow-modified DOI-CZE and polarity reversal in combination with asymmetric detector window positioning, are compared with the method of preliminary transport, a variable procedure within sequential sample introduction, using a six-component sample of organic and pharmaceutical compounds. The advantages of DOI-CZE for the simultaneous analysis of organic/pharmaceutical anions and cations are illustrated in a direct comparison of conventional CZE and DOI-CZE for the separation of a ten-component mixture of pharmaceutical ions (five ionized acids and five ionized bases).  相似文献   

3.
Pharmaceutical separations can be divided into three categories: high throughput, high productivity, and high resolution. These categories contain specific pharmaceutical applications, each of which has distinct separation goals. Traditionally, these goals have been achieved utilizing conventional HPLC with typical column dimensions and particle sizes. The recent introduction of ultra-HPLC (UHPLC) has provided a new potential for method development and analysis. Pharmaceutical chemists must determine the impact of this emerging technology. UHPLC is achieved by using sub-2 microm particle size column packing at increased linear velocities. In order to utilize this technology, mobile phase viscosity must be minimized or the chromatography system must be redesigned to withstand an increased backpressure. Today, there are many commercially available UHPLC systems capable of exceeding conventional pressure limits of 400 bar. The advantage of UHPLC over conventional HPLC is the capability to increase the speed without sacrificing efficiency. In comparison to traditional HPLC, our research showed that UHPLC can decrease run times up to 7 x. In addition, for high resolution applications, UHPLC achieved significant efficiency advantages over traditional HPLC. This paper will evaluate the potential roles for utilizing UHPLC in the pharmaceutical industry.  相似文献   

4.
毛细管电泳技术在药物分离分析中的研究与应用   总被引:2,自引:0,他引:2  
综述了近5年毛细管电泳在手性药物拆分、药物制剂及中草药分析中的应用.在手性药物拆分的应用中主要探讨了手性选择剂的种类及毛细管分离方法;在药物制剂、中草药的应用中主要介绍该法对药效成分进行的分离及定量分析,总结方法的检出限、线性范围和检测方法;最后,探讨了毛细管电泳在求取药物水解常数上的应用.提出毛细管电泳在药物分析中将有广阔的应用前景.  相似文献   

5.
The preparative chromatographic resolution of racemic mixtures is rapidly becoming a standard approach for the generation of enantiomers in pharmaceutical research and development. This paper will discuss the optical resolution of numerous pharmaceutical intermediates and final products using polar organic solvents with polysaccharide chiral stationary phases. The advantages of this approach compared to more traditional mobile phases for preparative separations will be presented. In addition the ability to reverse elution order using polar organic solvents will be presented.  相似文献   

6.
Enantiomers of bioactive molecules often differ in potency, toxicity, metabolism, and pharmacological actions. Capillary electrochromatography (CEC) is an emerging separation technique being investigated for use in chiral separations. CEC is a hybrid of HPLC and CE. CEC combines the electrophoretic mobility of CE with the partitioning mechanisms of HPLC. In this overview, several resolution mechanisms commonly used in CEC and the main parameters influencing the selectivity of the chiral separation will be discussed. Current applications of CEC in chiral separations of pharmaceuticals will be provided for each type of resolution mechanism. Finally, the advantages and limitations of CEC will be described, followed by the future outlook for CEC.  相似文献   

7.
This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.  相似文献   

8.
This paper reviews recent progress in the resolution of two-way data obtained from hyphenated instruments. Special emphasis is placed on the solution of practical problems. Methods for estimating the number of chemical components both statistically and visually (the first step in solving the resolution problem) and methods for resolving the pure profiles (the second step in solving the resolution problem) are discussed in detail. To deal with real-world problems, pitfalls in the chemometric analysis of the two-way data from the instrumental measurements are also pointed out. Applications of methods for solving some difficult practical problems in environmental chemistry, pharmaceutical chemistry, and physical chemistry will be discussed in the second part of this paper.  相似文献   

9.
This paper reviews recent progress in the resolution of two-way data obtained from hyphenated instruments. Special emphasis is placed on the solution of practical problems. Methods for estimating the number of chemical components both statistically and visually (the first step in solving the resolution problem) and methods for resolving the pure profiles (the second step in solving the resolution problem) are discussed in detail. To deal with real-world problems, pitfalls in the chemometric analysis of the two-way data from the instrumental measurements are also pointed out. Applications of methods for solving some difficult practical problems in environmental chemistry, pharmaceutical chemistry, and physical chemistry will be discussed in the second part of this paper.  相似文献   

10.
With the growth of the biopharmaceutical industry, there is a need for rapid size‐analysis of proteins on the megaDalton scale. The large pore sizes needed for such separations cannot be easily reached by pushing the current limits of size‐exclusion chromatography or gel electrophoresis. The concept detailed here is the formation of arbitrarily wide pores by packing nonporous colloidal silica in capillaries. This method can be called packed‐capillary electrophoresis, or “pCE”. Electrophoresis of protein standards (11–155 kDa) by pCE, using 345 nm diameter particles in 100 μm diameter capillaries, gives 2x higher resolution than a typical PAGE gel in 1/6 of the time. The electropherograms show that pCE is highly efficient, with half‐micrometer plate heights for all seven standards, giving 105 plates for a 50 mm length. The large pore radius of 65 nm enables baseline resolution of proteins of 0.72, 1.048 and 1.236 MDa in less than 15 min. The short separation time of pCE is attributed to the absence of small pores that restrict protein migration in gels. The pCE separation is applied to the analysis of a stressed pharmaceutical‐grade IgG4 sample, giving unprecedented baseline resolution of monomer, dimer, trimer and tetramer in less than 10 min.  相似文献   

11.
In this study, separation and determination of nine preservatives ranging from hydrophilic to hydrophobic properties, which are commonly used as additives in various pharmaceutical and cosmetic products, by micellar electrokinetic chromatograpy (MEKC) and microemulsion electrokinetic chromatography (MEEKC) were compared. The effect of temperature, buffer pH, and concentration of surfactant on separation were examined. In MEKC, the separation resolution of preservatives improved markedly by changing the sodium dodecyl sulfate concentration. Temperature and pH of running buffers were used mainly to shorten the magnitude of separation time. However, in order to detect all preservatives in a single run in a MEEKC system, a microemulsion of higher pH was needed. The separation resolution was improved dramatically by changing temperature, and a higher concentration of SDS was necessary for maintaining a stable microemulsion solution, therefore the separation of the nine preservatives in MEEKC took longer than in MEKC. An optimum MEKC method for separation of the nine preservatives was obtained within 9.0 min with a running buffer of pH 9.0 containing 20 mM SDS at 25 degrees C. A separation with baseline resolution was also obtained within 16 min using a microemulsion of pH 9.5 which composed of SDS, 1-butanol, and octane, and a shorter capillary column at 34 degrees C. Finally, the developed MEKC and MEEKC methods determined successfully preservatives in various cosmetic and pharmaceutical products.  相似文献   

12.
This paper reports the use of an anionic cyclodextrin, heptakis(2,3-di-O-methyl-6-O-sulfato)-β-cyclodextrin (HDMS-β-CD), for chiral separations of pharmaceutical enantiomers by nonaqueous capillary electrophoresis (NACE). Enantiomer resolution was affected mainly by HDMS-β-CD concentration and the acidity of the background electrolyte (BGE). The effects of capillary length and applied voltage on enantiomer resolution were also investigated. Results showed that in a methanol solution of 20 mM phosphoric acid, 10 mM sodium hydroxide, and 10 mM HDMS-β-CD, seven anticholinergic drugs were separated to baseline but no chiral separation was obtained for three other similar drugs. NACE is suitable for routine, rapid separation of the enantiomers of pharmaceutical compounds.  相似文献   

13.
A review is presented on the use of charged cyclodextrins (CDs) as chiral selectors in capillary electrophoresis (CE) for the separation of analytes in pharmaceutical analysis. An overview is given of theoretical models that have been developed for a better prediction of the enantiomeric resolution and for a better understanding of the separation mechanism. Several types of charged CDs have been used in chiral capillary electrophoretic separation (anionic, cationic, and amphoteric CDs). Especially the anionic CDs seem to be valuable due to the fact that many pharmaceutically interesting compounds can easily be protonated (e.g., amine groups). For that reason several anionic CDs are now commercially available. Cationic and amphoteric CDs are less common in chiral analysis and only a few are commercially available. Attention is paid to the most common synthesis routes and the characterization of the CDs used in chiral capillary electrophoretic separations. The degree of substitution in the synthesized CDs may vary from one manufacturer to another or even from batch to batch, which may have a detrimental effect on the reproducibility and ruggedness of the separation system. In Sections 4, 5, and 6 the applications of anionic, cationic, and amphoteric CDs for the chiral separation in CE are described. Many interesting examples are shown and the influence of important parameters on the enantioselectivity is discussed.  相似文献   

14.
The characterization and determination of peptides is of great importance in the pharmaceutical industry as is the ability to rapidly perform targeted determinations of bioactive peptides in complex matrices. The purpose of the presented work is to assess the feasibility of packed column supercritical fluid chromatography (SFC) for the separation of two-pairs of water soluble peptides of identical mass, composition and charge that differ only in amino acid sequence. Upon evaluating a variety of conditions, trifluoroacetic acid (HTFA) in conjunction with methanol as the modifier proved to be, in general, the most successful mobile phase additive for elution of the two isomeric peptide pairs from all nitrogenous stationary phases. In contrast, water and ammonium acetate gave distorted peak shapes and therefore proved to be less satisfactory as neutral additives. The basic additive, iso-propylamine (IPAm), coupled with HA-Pyridine yielded the highest resolution factor for the complete study. Aminopropyl and HA-Pyridine columns with 5 μm particle size and 60 Å pore size were found to be best for resolution of each peptide pair. Bare silica and phenyl-hexyl stationary phases did not afford any separation. The primary roles of the carbon dioxide and methanol modifier are believed to provide (a) stationary phase solvation and (b) peptide solubility and transport; while, HTFA is postulated to fully protonate each peptide and form ion pairs between its conjugate base and cationic peptide analyte. The separation process, therefore, is best viewed as ion pair supercritical fluid chromatography (IP-SFC). For the case where IPAm gave good resolution on the HA-Pyridine column, the peptides are probably in the neutral state.  相似文献   

15.
Capillary electrokinetic separation techniques offer high efficiency and peak capacity, and can be very useful for the analysis of samples containing a large variety of (unknown) compounds. Such samples are frequently met in impurity profiling of drugs (detection of potential impurities in a pharmaceutical substance or product) and in general sample profiling (determination of differences or similarities between samples). In this paper, the potential, merits, and limitations of electrokinetic separation techniques for profiling purposes are evaluated using examples from literature. A distinction is made between impurity profiling, forensic profiling and profiling of natural products, and the application of capillary zone electrophoresis, micellar electrokinetic chromatography, and capillary electrochromatography in these fields is discussed. Attention is devoted to important aspects such as selectivity, resolution enhancement, applicability, detection, and compound confirmation and quantification. The specific properties of the various electrokinetic techniques are discussed and compared with more conventional techniques as liquid chromatography.  相似文献   

16.
The chiral separations of four pharmaceutical racemates which contain N-alkyl groups were satisfactorily resolved using SBE-β-CD as a chiral mobile phase additive(CMPA)in a RP-HPLC system(the resolution is 2.701 for ondansetron hydrochloride,1.996 for sulpiride,1.293 for clenbuterol hydrochloride and 0.816 for omeprazole).In addition,the effects of different parameters such as CD type and CD concentration were investigated.The separation mechanism arises through the combination of several potential interactions,including electrostatic interactions as well as hydrogen bonding interactions and hydrophobic inclusion interactions,which allow for the SBE-β-CD–drug complexation with strong stereoselectivity and stability.The resolution also relates to the number and location of N atoms in the enantiomers.This method will be applicable to the isolation of various types of biologically important enantiomers containing N-alkyl groups.  相似文献   

17.
The role of order within a porous separation matrix on the separation efficiency of DNA was studied systematically. DNA separation was based on a ratchet mechanism. Monodisperse colloidal suspensions of nanoparticles were used to fabricate highly ordered separation media with a hexagonal close-packed structure. Doping with a second particle size yielded structures with different degrees of disorder, depending upon the volume fraction of each particle size. Radial distribution functions and orientational order parameters were calculated from electron micrographs to characterize the scale of disorder. The peak separation distance, band broadening, and separation resolution of DNA molecules was quantified for each structure. DNA separation parameters using pulsed fields and the ratchet effect showed a strong dependence on order within the porous nanoparticle array. Ordered structures gave large separation distances, smaller band broadening and better resolution than highly disordered, nearly random, porous structures. The effect dominated these three parameters when compared to the effect of pore size. However, the effect of order on separation performance was not monotonic. A small, but statistically significant improvement was seen in structures with short range order compared to those with long range order.  相似文献   

18.
The SSR and SFC techniques were used for the enantiomeric resolution of three pharmaceutical intermediates at various sample scales. The separation conditions, the sample purities and yields, the productivities and the solvent consumptions were discussed in three case studies in this paper. In case (I), the SSR process was used for a low selectivity resolution of 2.0 kg of pharmaceutical intermediate. By using this separation process, a productivity of 750 g racemate/kg stationary phase/day was achieved, while solvent usage was minimized ( approximately 200 l/kg racemate). Case (II) pertained to the effectiveness of the SSR process. Productivity using SSR techniques increased by a factor of 4.5, while solvent usage decreased by a factor of 4.1 when compared to the productivity and solvent usage of batch HPLC. Case (III) compared SFC purification to HPLC purification. The SFC process was more effective in terms of an increase in productivity and a reduction in solvent usage. Based on these results, it appears that SSR and SFC are very useful choices at the early stage of the drug development for a high throughput and a rapid turn around of samples.  相似文献   

19.
The application of high-pressure liquid chromatography (HPLC) to proteins has undergone a dramatic development in recent years. Nowadays its many variants expand the repertoire of high-performance analysis methods available to the protein chemist, which, until now, have been dominated by electrophoretic techniques. The advent of gene technology has resulted in a renaissance of protein chemistry. The new analytical and preparative problems that have thereby emerged are often ideally solved by HPLC methods. HPLC has long since ceased to be solely a laboratory technique; HPLC systems are now being developed for the separation of proteins–particularly those of great pharmaceutical interest – on a 100-g scale. The range of applications of analytical and preparative HPLC will be illustrated by two examples of pharmaceutical importance—insulin and interleukin 2.  相似文献   

20.
The demand of high-purity plasmid DNA (pDNA) for gene-therapy and genetic vaccination is still increasing. For the large scale production of pharmaceutical grade plasmids generic and economic purification processes are needed. Most of the current processes for pDNA production use at least one chromatography step, which always constitutes as the key-step in the purification sequence. Monolithic chromatographic supports are an alternative to conventional supports due to their excellent mass transfer properties and their high binding capacity for pDNA. Anion-exchange chromatography is the most popular chromatography method for plasmid separation, since polynucleotides are negatively charged independent of the buffer conditions. For the implementation of a monolith-based anion exchange step into a pDNA purification process detailed screening experiments were performed. These studies included supports, ligand-types and ligand-densities and optimization of resolution and productivity. For this purpose model plasmids with a size of 4.3 and 6.9 kilo base pairs (kbp) were used. It could be shown, that up-scaling to the production scale using 800 ml CIM Convective Interaction Media radial flow monoliths is possible under low pressure conditions. CIM DEAE was successfully implemented as intermediate step of the cGMP pDNA manufacturing process. Starting from 2001 fermentation aliquots pilot scale purification runs were performed in order to prove scale-up and to predict further up-scaling to 8 1 tube monolithic columns. The analytical results obtained from these runs confirmed suitability for pharmaceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号