首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. W. Meyer  P. Jenny 《PAMM》2007,7(1):4090013-4090014
Joint composition probability density function (PDF) methods are used for the numerical simulation of turbulent reactive flows. Here, other than in classical Reynolds averaged Navier–Stokes (RANS) or large eddy simulation (LES) approaches, the highly non-linear chemical source term appears in closed form. On the other hand, mixing models are required for the closure of the molecular diffusion term. In the present work, the joint statistics of the scalar and the scalar dissipation rate provided by the parameterized scalar profile (PSP) mixing model are validated. The goal is to combine the PDF method with a flamelet approach, where the scalar dissipation rate plays a crucial role in determining the contribution of the chemical source term. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Moment independent sensitivity index is widely concerned and used since it can reflect the influence of model input uncertainty on the entire distribution of model output instead of a specific moment. In this paper, a novel analytical expression to estimate the Borgonovo moment independent sensitivity index is derived by use of the Gaussian radial basis function and the Edgeworth expansion. Firstly, the analytical expressions of the unconditional and conditional first four-order moments are established by the training points and the widths of the Gaussian radial basis function. Secondly, the Edgeworth expansion is used to express the unconditional and conditional probability density functions of model output by the unconditional and conditional first four-order moments, respectively. Finally, the index can be readily computed by measuring the shifts between the obtained unconditional and conditional probability density functions of model output, where this process doesn't need any extra calls of model evaluation. The computational cost of the proposed method is independent of the dimensionality of model inputs and it only depends on the training points and the widths which are involved in the Gaussian radial basis function meta-model. Results of several case studies demonstrate the effectiveness of the proposed method.  相似文献   

3.
Michael Hegetschweiler  Patrick Jenny 《PAMM》2007,7(1):4090019-4090020
Turbulent combustion is commonly categorized into premixed, non-premixed and partially premixed combustion. For nonpremixed combustion simulations the laminar flamelet concept proved to be very valuable while for the more complex case of partially premixed combustion this model shows considerable deficiencies. Here, the classical laminar flamelet approach is extended to the partially premixed combustion regime. For that, the joint statistics of mixture fraction, scalar dissipation rate and a progress variable, calculated with a joint probability density function (PDF) method, is used to get the statistics of the compositions and of the chemical energy source term from pre-processed flame tables. This approach can be compared with the unsteady flamelet concept; the main differences consists of the way the progress variable evolution is computed and in the pre-computed flame tables. The progress variable describes the point of time a fluid parcel is consumed by a flame front. The fluid parcels are represented by computational particles, which are used for PDF methods. The pre-computed flame tables are computed from steady solutions 2D stabilized flames propagating into an unburnt mixture with varying mixture fraction. The corresponding position of a fluid particle in such a 2D laminar flame is determined by its mixture fraction and a burning time; both to be modeled for each computational particle in the PDF simulation. Numerical experiments of turbulent diffusion jet flames demonstrate that this approach can be employed for challenging test cases. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The laminar flamelet concept is used in the prediction of mean reactive scalars in a non-premixed turbulent CH4/H2/N2 flame. First, a databank for temperature and species concentrations is developed from the solutions of counter-flow diffusion flames. The effects of flow field on flamelets are considered by using mixture fraction and scalar dissipation rate. Turbulence-chemistry interactions are taken into account by integrating different quantities based on a presumed probability density function (PDF), to calculate the Favre-averaged values of scalars. Flamelet library is then generated. To interpolate in the generated library, one artificial neural network (ANN) is trained where the mean and variance of mixture fraction and the scalar dissipation rate are used as inputs, and species mean mass fractions and temperature are selected as outputs. The weights and biases of this ANN are implemented in a CFD flow solver code, to estimate mean values of the scalars. Results reveal that ANN yields good predictions and the computational time has decreased as compared to numerical integration for the estimation of mean thermo-chemical variables in the CFD code. Predicted thermo-chemical quantities are close to those from experimental measurements but some discrepancies exist, which are mainly due to the assumption of non-unity Lewis number in the calculations.  相似文献   

5.
Many statistical models, e.g. regression models, can be viewed as conditional moment restrictions when distributional assumptions on the error term are not assumed. For such models, several estimators that achieve the semiparametric efficiency bound have been proposed. However, in many studies, auxiliary information is available as unconditional moment restrictions. Meanwhile, we also consider the presence of missing responses. We propose the combined empirical likelihood (CEL) estimator to incorporate such auxiliary information to improve the estimation efficiency of the conditional moment restriction models. We show that, when assuming responses are strongly ignorable missing at random, the CEL estimator achieves better efficiency than the previous estimators due to utilization of the auxiliary information. Based on the asymptotic property of the CEL estimator, we also develop Wilks’ type tests and corresponding confidence regions for the model parameter and the mean response. Since kernel smoothing is used, the CEL method may have difficulty for problems with high dimensional covariates. In such situations, we propose an instrumental variable-based empirical likelihood (IVEL) method to handle this problem. The merit of the CEL and IVEL are further illustrated through simulation studies.  相似文献   

6.
In this paper, we proposed a higher-order moment method in the lattice Boltzmann model for the conservation law equation. In contrast to the lattice Bhatnagar–Gross–Krook (BGK) model, the higher-order moment method has a wide flexibility to select equilibrium distribution function. This method is based on so-called a series of partial differential equations obtained by using multi-scale technique and Chapman–Enskog expansion. According to Hirt’s heuristic stability theory, the stability of the scheme can be controlled by modulating some special moments to design the third-order dispersion term and the fourth-order dissipation term. As results, the conservation law equation is recovered with higher-order truncation error. The numerical examples show the higher-order moment method can be used to raise the accuracy of the truncation error of the lattice Boltzmann scheme for the conservation law equation.  相似文献   

7.
In turbulent combustion one distinguishes between premixed, non-premixed and partially premixed combustion. While laminar flamelet models proved to be extremely valuable for a wide range of non-premixed flame simulations, similar approaches are more problematic in the partially premixed regime. Here the laminar flamelet concept for non-premixed turbulent combustion simulations is generalized for the partially premixed regime. Similar as in the unsteady flamelet approach, the joint statistics of a progress variable, mixture fraction and scalar dissipation rate is used to obtain the joint statistics of the compositions from pre-computed flame tables. The required distribution is computed with a joint PDF method and the main differences between the new approach and previous ones, are the pre-computed tables and the way the evolution of the progress variable is calculated. Instead of evolving 1D flamelets, steady 2D solutions of burning flamelets propagating into unburned mixtures with varying mixture fraction are considered. The location of a fluid particle in this 2D laminar flame is defined by its mixture fraction and a burning time, which are modeled for each computational particle used in the PDF method. Numerical experiments of a turbulent lifted diffusion flame and a premixed Bunsen flame demonstrate that this approach can be employed for a wide range of applications. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Let be an open set. We consider on Ω the competitors (U,K) for the reduced Mumford–Shah functional, that is to say the Mumford–Shah functional in which the -norm of U term is removed, where K is a closed subset of Ω and U is a function on ΩK with gradient in  . The main result of this paper is the following: there exists a constant c for which, whenever (U,K) is a quasi-minimizer for the reduced Mumford–Shah functional and B(x,r) is a ball centered on K and contained in Ω with bounded radius, the -measure of is bounded above by crN−1 and bounded below by c−1rN−1.  相似文献   

9.
The first-passage failure of linear oscillator with inelastic impact subjected to the additive and multiplicative random noises is investigated. The impact is described by the non-classical inelastic impact model, which is essentially different from the traditional impact model and can provide the whole information of the impact process. First of all, the impact force in the motion equation is replaced by the quasi-linear damping and nonlinear stiffness terms. Then, the stochastic averaging is adopted and the averaged Itô stochastic deferential equation of the total system energy is derived. Last, by solving the established backward Kolmogorov equation and Pontryagin equation from the averaged Itô equation numerically, the conditional reliability, the conditional probability density function (PDF) and the mean time of first-passage failure can be obtained. The comparison between the analytical results and those from Monte-Carlo simulation reveals the proposed procedure is effective. The influences of some system parameters are discussed in detail.  相似文献   

10.
A Feller–Reuter–Riley function is a Markov transition function whose corresponding semigroup maps the set of the real-valued continuous functions vanishing at infinity into itself. The aim of this paper is to investigate applications of such functions in the dual problem, Markov branching processes, and the Williams-matrix. The remarkable property of a Feller–Reuter–Riley function is that it is a Feller minimal transition function with a stable q-matrix. By using this property we are able to prove that, in the theory of branching processes, the branching property is equivalent to the requirement that the corresponding transition function satisfies the Kolmogorov forward equations associated with a stable q-matrix. It follows that the probabilistic definition and the analytic definition for Markov branching processes are actually equivalent. Also, by using this property, together with the Resolvent Decomposition Theorem, a simple analytical proof of the Williams' existence theorem with respect to the Williams-matrix is obtained. The close link between the dual problem and the Feller–Reuter–Riley transition functions is revealed. It enables us to prove that a dual transition function must satisfy the Kolmogorov forward equations. A necessary and sufficient condition for a dual transition function satisfying the Kolmogorov backward equations is also provided.  相似文献   

11.
We proved a uniqueness theorem of tangent connections for a Yang–Mills connection with an isolated singularity with a quadratic growth of the curvature at the singularity. We also obtained control over the rate of the asymptotic convergence of the connection to the tangent connection if furthermore the connection is stationary or the tangent connection is integrable, with a stronger result in the latter case. There are parallel results for the cones at infinity of a Yang–Mills connection on an asymptotically flat manifold. We also gave an application of our methods to the Yang–Mills flow and proved that the Yang–Mills flow exists for all time and has asymptotic limit if the initial value is close to a smooth local minimizer of the Yang–Mills functional.  相似文献   

12.
Robust nonparametric regression estimation   总被引:1,自引:0,他引:1  
In this paper we define a robust conditional location functional without requiring any moment condition. We apply the nonparametric proposals considered by C. Stone (Ann. Statist. 5 (1977), 595–645) to this functional equation in order to obtain strongly consistent, robust nonparametric estimates of the regression function. We give some examples by using nearest neighbor weights or weights based on kernel methods under no assumptions whatsoever on the probability measure of the vector (X,Y). We also derive strong convergence rates and the asymptotic distribution of the proposed estimates.  相似文献   

13.
This paper presents a novel four-stage algorithm for the measurement of the rank correlation coefficients between pairwise financial time series. In first stage returns of financial time series are fitted as skewed-t distributions by the generalized autoregressive conditional heteroscedasticity model. In the second stage, the joint probability density function (PDF) of the fitted skewed-t distributions is computed using the symmetrized Joe–Clayton copula. The joint PDF is then utilized as the scoring scheme for pairwise sequence alignment in the third stage. After solving the optimal sequence alignment problem using the dynamic programming method, we obtain the aligned pairs of the series. Finally, we compute the rank correlation coefficients of the aligned pairs in the fourth stage. To the best of our knowledge, the proposed algorithm is the first to use a sequence alignment technique to pair numerical financial time series directly, without initially transforming numerical values into symbols. Using practical financial data, the experiments illustrate the method and demonstrate the advantages of the proposed algorithm.  相似文献   

14.
We describe methods for the derivation of strong asymptotics for the denominator polynomials and the remainder of Padé approximants for a Markov function with a complex and varying weight. Two approaches, both based on a Riemann–Hilbert problem, are presented. The first method uses a scalar Riemann–Hilbert boundary value problem on a two-sheeted Riemann surface, the second approach uses a matrix Riemann–Hilbert problem. The result for a varying weight is not with the most general conditions possible, but the loss of generality is compensated by an easier and transparent proof.  相似文献   

15.
Suppose given a realization of a Poisson process on the line: call the points ‘germs’ because at a given instant ‘grains’ start growing around every germ, stopping for any particular grain when it touches another grain. When all growth stops a fraction e−1 of the line remains uncovered. Let n germs be thrown uniformly and independently onto the circumference of a circle, and let grains grow under a similar protocol. Then the expected fraction of the circle remaining uncovered is the nth partial sum of the usual series for e−1. These results, which sharpen inequalities obtained earlier, have one-sided analogues: the grains on the positive axis alone do not cover the origin with probability e−1/2, and the conditional probability that the origin is uncovered by these positive grains, given that the germs n and n+1 coincide, is the nth partial sum of the series for e−1/2. Despite the close similarity of these results to the rencontre, or matching, problem, we have no inclusion–exclusion derivation of them. We give explicitly the distributions for the length of a contiguous block of grains and the number of grains in such a block, and for the length of a grain. The points of the line not covered by any grain constitute a Kingman-type regenerative phenomenon for which the associated p-function p(t) gives the conditional probability that a point at distance t from an uncovered point is also uncovered. These functions enable us to identify a continuous-time Markov chain on the integers for which p(t) is a diagonal transition probability.  相似文献   

16.
We study the semiparametric estimation of stochastic differential equations employing methods based on moment conditions, comparing the finite sample and robustness properties of generalized method of moments, empirical likelihood and minimum contrast methods using unconditional and conditional formulations of moment conditions. The results obtained indicate that the estimators proposed, particularly, the estimators based on exponential tilting, obtain better results than those of the generalized methods of moments normally used to estimate stochastic differential equations. This conclusion is mainly derived from the robustness properties of this method in the presence of problems of incorrect specification.  相似文献   

17.
In the framework of standard static space–times, we state a family of sufficient or necessary conditions for a set of physically reasonable energy and convergence conditions in relativity and related theories. We concentrate our study on questions about the sub-harmonicity of the warping function, the scalar curvature map, conformal hyperbolicity, conjugate points and the time-like diameter of this class of space–times.  相似文献   

18.
The Korteweg–de Vries equation is numerically solved by using the exponential finite-difference technique. The accuracy of computed solutions is examined by comparison with other numerical and analytical solutions using two examples. The close results agreement between the current results and the exact solutions confirms that the proposed finite-difference procedure is an effective technique for the solution of the Korteweg–de Vries equation at the small times.  相似文献   

19.
A. Maltsev  A. Sadiki  J. Janicka 《PAMM》2003,2(1):382-383
In practical turbulent flow problems of engineering importance the coupling between velocity and scalar turbulence along with the variable density plays a non negligible role. For computations using second moment closure approach, the pressure redistribution/scrambling is the most critical term to be modeled as well known. Almost all existing models consist in rescating models derived on a constant density basis in a density weighted form. With regard to turbulent premixed combustion in fact, the application of such models to a range of transient one‐dimensional and two‐dimensional premixed flames in the flamelet regime has been found to yield unsatisfactory results, see [1]. As pointed out by Sadiki [2], the use of the Favre method must be consistently considered as far as open thermodynamic systems are concerned. Furthermore, the need for maintaining certain invariance properties, physical and mathematical realizability conditions in formulating turbulence models is well accepted. Because turbulent processes are irreversible, these efforts demand a carefull consideration of thermodynamic concepts. Based on the results in [1] and following [2], this work aims to derive a physically consistent formulation of the pressure redistribution/scrambling term under consideration of the variable density. Considering the case of premixed flames, the thermochemistry is included by means of a single reactive scalar ‐ the reaction progress variable. The accuracy of the model extensions proposed is demonstrated by comparing the numerical results with experimental data in opposed jet premixed flame configuration.  相似文献   

20.
In this letter, the Exp-function method is applied to the Whitham–Broer–Kaup shallow water model. With the help of symbolic computation, several kinds of new solitary wave solutions are formally derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号