首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 684 毫秒
1.
ZrO2表面B2O3的分散及其作用状态   总被引:4,自引:0,他引:4  
用XPS、FT IR和FT Raman等技术研究了ZrO2表面B2O3的分散及其作用状态,测定了B2O3在ZrO2表面的分散阈值.结果表明:B2O3在ZrO2表面可以三配位BO3和四配位BO4结构单元存在;载体ZrO2的预焙烧温度和硼含量对B2O3的分散及作用状态有较大影响,并改变BO3与BO4结构单元之间的比例.实验测得B2O3在ZrO2载体上的单层分散阈值为0.05 gB2O3/gZrO2(或B2O3的质量分数w=4.76%),处在此单层中的硼原子以BO4为结构单元直接与ZrO2表面相作用.只有当B2O3的负载量超过此(单层)分散阈值时, BO3结构单元才会形成.  相似文献   

2.
La2O3对Ni/γ-Al2O3甲烷化催化剂的助催化作用   总被引:14,自引:0,他引:14  
我国将稀土作为助剂引入镍基甲烷化催化剂,大大提高了催化剂的活性和热稳定性,并已投入工业应用[1-3].稀土对不同镍催化剂反应性能及其作用机理的研究已有一些报导[3-7].谢有畅等观察到镍负载在经单层La2O3改性的γ-Al2O3表面,其晶粒要比没有La2O3时小得多.Rotgerink等认为添加La后反应速率的增加不只是由于几何效应,而是La对甲烷化本身有促进作用,单位镍表面的活性是随La含量不同而改变的,活性增加的同时表观活化能也增加[5].作为助剂的La2O3在氢还原和反应过程中的变化及其作用的研究和讨论较少,目前一般认为添…  相似文献   

3.
采用水热法制备了中空短棒状纳米Fe2O3,并用超声分散法将其与纳米Al颗粒复合为单金属氧化基超级铝热剂.利用X射线粉末衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电镜及能量散射光谱仪(SEM-EDS)对样品进行表征.并运用差示扫描量热法(DSC)对比研究了超级铝热剂Al/Fe2O3、Al粉和纳米Fe2O3对环三亚甲基三硝胺(RDX)热分解特性的影响.结果表明:超级铝热剂的加入改变了RDX的热分解过程,并加剧了RDX的二次气相反应;随着超级铝热剂含量的增加,RDX的分解峰峰形发生了明显的改变;Al/Fe2O3、Al粉和Fe2O3对RDX热分解的作用主要表现为二次分解峰逐渐明显且峰温降低.  相似文献   

4.
Summary. The textural characteristics, including surface area, mean pore diameters, and total pore volume of Cr2O3–CuO/Al2O3 solid catalysts were determined from the low temperature adsorption of N2 at 77 K. The structural properties were investigated using XRD. The surface acidity of calcined samples was determined using two comparable methods, including the non-aqueous titration of acidic groups with n-butylamine and dehydration/dehydrogenation activity of cyclohexanol. XRD patterns assigned a crystalline CuO and γ-Al2O3 for 723 K calcinations products of lower Cr2O3 content. The gradual increase of calcinations temperature promoted the crystallinity of Cr2O3 and resulted in solid–solid interaction of CuO and Cr2O3 forming CuCr2O4. The textural parameters varied with both calcinations temperature and catalyst composition. The surface acid density (DAS) increased with the increase of chromia content up to 0.132 mole% Cr2O3, while the rise of calcinations temperature led to a decrease of surface acidity. The dehydration/dehydrogenation of cyclohexanol as well as n-butylamine titration succeeded in characterizing of surface acidity. Present address: Chemistry Department, College of Science, King Faisal University, Al-Hofuf 31982, Saudi Arabia  相似文献   

5.
Subsolidus phase equilibria and crystal chemistry were studied for the La2O3-MgO-TiO2 system and for the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3 in the quaternary La2O3-CaO-MgO-TiO2 system. Dielectric properties (relative permittivity and temperature coefficient of resonant frequency, τf) were measured at 5-10 GHz and mapped onto the phase equilibria relations to reveal the compositions of temperature-stable (τf=0) compounds and mixtures. Phase equilibria relations were obtained by X-ray powder diffraction analysis of approximately 80 specimens prepared by solid-state reactions in air at ∼1450°C. Six ternary phases were found to form in the La2O3-MgO-TiO2 system, including the three previously reported compounds LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, and “La6MgTi4O18”; and the new phases La10MgTi9O34, La9Mg0.5Ti8.5O31, and a perovskite-type solid solution (1−x)LaMg1/2Ti1/2O3-xLa2/3TiO3 (0?x?0.5). The phase previously reported as “La6MgTi4O18” was found to form off-composition, apparently as a point compound, at La6Mg0.913Ti4.04O18. Indexed experimental X-ray powder diffraction patterns are given for LaMg1/2Ti1/2O3, La5Mg0.5Ti3.5O15, La6Mg0.913Ti4.04O18, La10MgTi9O34, and La9Mg0.5Ti8.5O31. LaMg1/2Ti1/2O3 exhibits a slightly distorted perovskite structure with ordered B-cations (P21/n; a=5.5608(2) Å, b=5.5749(3) Å, c=7.8610(5) Å, β=90.034(4)°). La5Mg0.5Ti3.5O15 (Pm1; a=5.5639(1), c=10.9928(5) Å) and La6Mg0.913Ti4.04O18 (R3m; a=5.5665(1), c=39.7354(9) Å) are n=5 and n=6 members, respectively, of the (111) perovskite-slab series AnBn−1O3n. The new phases La10MgTi9O34 (a=5.5411(2), b=31.3039(9), c=3.9167(1) Å) and La9Mg0.5Ti8.5O31 (a=5.5431(2), b=57.055(1), c=3.9123(1) Å) are n=5 and n=4.5 members, respectively, of the (110) perovskite-slab series AnBnO3n+2, which exhibit orthorhombic subcells; electron diffraction revealed monoclinic superlattices with doubled c-parameters for both compounds. Extensive perovskite-type solid solutions form in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3. The La2O3-MgO-TiO2 system contains two regions of temperature-stable (τf=0) compositions. The quaternary La2O3-CaO-MgO-TiO2 system contains an extensive single-phase perovskite-type volume through which passes a surface of temperature-stable compositions with permittivities projected to be in the 40-50 range. Traces of this surface occur as lines of τf=0 perovskite-type phases in the ternary sections LaMg1/2Ti1/2O3-CaTiO3-La2O3 and LaMg1/2Ti1/2O3-CaTiO3-La0.833Mg0.25Ti0.75O3.  相似文献   

6.
采用水热合成法制备了Co3O4及复合Ag/Co3O4、CuO/Co3O4一维纳米产品。用XRD,FE-SEM和TEM手段对产品进行了表征。采用循环伏安法研究了合成产品修饰的玻碳电极在碱性溶液中对对硝基苯酚的电催化还原性能。与裸玻碳电极相比,1mmol·L-1的对硝基苯酚在用Co3O4、特别是CuO/Co3O4修饰的玻碳电极上还原的峰电流明显增大,用Ag/Co3O4(Ag/Co原子比分别为1∶5和2∶5)修饰的玻碳电极催化还原对硝基苯酚时,尽管还原峰电流增大不是太大,但其峰电位明显降低(分别降低0.265和0.371V)。  相似文献   

7.
以嵌段共聚物F127 (PEO106PPO70PEO106, MW=12600)为模板剂, 异丙醇铝和钛酸四丁酯为金属源, 低分子量的酚醛树脂为碳源, 通过溶胶-凝胶三元共组装法合成了具有双孔径分布的C-Al2O3-TiO2纳米复合材料.用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)及N2吸附-脱附对该复合材料进行结构表征. 结果显示, 当铝钛原子的摩尔比为1:10 时, 对应的纳米复合材料具有较好的有序介孔结构, 其双孔径分别为3.9和6.5 nm, 比表面积可达259 m2·g-1, 孔容0.37 cm3·g-1. 以三元乙丙橡胶(EPDM)为粘结剂, 与介孔纳米复合材料混合制备涂层. 通过调节复合材料中铝钛摩尔比和涂层厚度, 红外发射率在0.450-0.617之间可调.  相似文献   

8.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

9.
A series of La-doped Al2O3 catalysts were prepared and tested for the vapor phase hydrofluorination of C2H2 to vinyl fluoride (CH2CHF, VF). It was found that the La-doped catalyst gave a stable catalytic performance and a higher selectivity to the desired VF and a lower selectivity to coke deposition compared with the pure Al2O3 catalyst. The enhancement in VF selectivity on the La-doped catalyst was due to the elimination of acidic sites on the Al2O3 surface by the addition of La2O3, evidenced by NH3-TPD results, which could also explain the declined selectivity to coke deposition on the catalyst. Raman result indicated there were two different vibration forms of CH distortion and CC expansion for the coke deposition.  相似文献   

10.
Reactivity of mixtures of La(III) oxide and Cu(II) oxalate/nitrate in hydrated as well as anhydrous state was studied using TG, DTA and XRD. Cu(II) oxide formed in the endothermic decomposition of mixture containing hydrated Cu(II) nitrate and La(III) oxide could not form La2CuO4 while Cu(II) oxide formed in the exothermic decomposition of mixture containing hydrated/anhydrous Cu(II) oxalate and La(III) oxide reacts with La(III) oxide and develops the phases CuLaO3 and La2CuO4. The maximum reactivity with respect to the formation of La2CuO4phase was observed in mixture containing anhydrous Cu(II) oxalate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.  相似文献   

12.
通过恒电势电沉积和加热处理在泡沫镍基体上制备了Co3O4纳米片. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对纳米片的形貌和结构进行了表征. 采用线性伏安扫描和计时电流技术研究了Co3O4纳米片电极对H2O2的电还原性能. 结果表明,在3.0 mol/L KOH 和 0.4 mol/L H2O2溶液中,当电压为-0.4 V(vs. Ag/AgCl)时,线性伏安扫描电流密度达到-0.386 A/cm2,在1000 s 测试时间内,计时电流密度衰减很小,表明Co3O4纳米片电极对H2O2具有很高的活性和稳定性.  相似文献   

13.
Co/Al2O3 catalysts prepared by changing pH coprecipitation with Co loadings in the 8.7–36 wt.% range were analyzed by TSA, TPV, pore structure, XRD as well as CO, H2, O2 adsorption and CO hydrogenation. High O2 uptake and reducibility coupled with low dispersion and constant MSA above 17 wt.% Co indicate large crystallites that are less exposed to H2. CO hydrogenation per Co site decreases with increasing dispersion or decreasing metal loading.  相似文献   

14.
以金属铝为阴极材料,以3mol·L-1浓度的NH4NO3水溶液为电解液,采用非对称电极阴极等离子体电解方法制备出氧化铝纳米颗粒.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量色散谱(EDX)、X射线衍射(XRD)和X射线光电子能谱(XPS)对颗粒的形貌和结构进行了表征.结果表明颗粒以立方相Al2O3为主.还对放电过程的电流变化和发光现象进行了研究.结合实验结果提出了这种颗粒的生长机制.  相似文献   

15.
采用共沉淀法制备了系列铜负载量不同的Cu/Fe2O3水煤气变换(WGS)催化剂,并考察了铜负载量对催化剂结构和水煤气变换反应性能的影响. 结果表明,Cu/Fe2O3催化剂呈现出良好的水煤气反应性能,当CuO质量分数为20%时,催化剂的WGS性能最优,250 ℃时CO转化率高达97.2%,同时热稳定性也最好. 运用X射线粉末衍射(XRD)、N2物理吸脱附和H2程序升温还原(H2-TPR)等手段对Cu/Fe2O3催化剂的物相、织构特征及还原性能进行了表征,结果表明,CuFe2O4物种的存在极大地改善了催化剂的还原性能和WGS反应活性. 这是由于CuFe2O4特殊的尖晶石结构有利于Cu微晶的稳定;同时,CuFe2O4在低温下即被还原为单质铜,有利于促进催化剂体系中电子的转移. 此外,通过(NH4)2CO3溶液处理,研究了独立相CuO对Cu/Fe2O3催化剂WGS反应性能的影响,结果发现,独立相CuO的存在,有利于H原子在各组分传递,从而促进催化剂的CuFe2O4的还原,改善Cu/Fe2O3催化剂的WGS反应性能.  相似文献   

16.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

17.
以TiO2为基体,在聚苯乙烯(PS)胶球和EO20PO70EO20(P123)两种模板剂作用下通过溶胶-凝胶及煅烧后处理方法制备了三维有序大孔纳米复合材料Bi2O3/TiO2.经傅里叶变换红外(FT-IR)光谱、X-射线衍射(XRD)、等离子体原子发射光谱(ICP-AES)、紫外-可见漫反射吸收光谱(UV-Vis DRS)、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和N2吸附-脱附等物理测试手段对其组成、结构、形貌及表面物理化学性能进行了表征.结果表明,该复合材料晶型结构良好,孔结构排列整齐有序,孔壁呈介孔结构,属于三维有序大孔材料(3DOM).与TiO2相比,3DOM-Bi2O3/TiO2对光的吸收至少红移60 nm,且红移至可见区.在紫外光、可见光以及微波辅助等多模式光催化降解结晶紫的实验中,复合材料3DOM-Bi2O3/TiO2表现出良好的光催化活性,其活性明显高于P25、Bi2O3和Bi2O3/TiO2.同时,该复合材料针对不同类型的染料均表现出较好的紫外光降解效果,且3次循环实验后,依旧保持较高活性.  相似文献   

18.
A V2O5/Al2O3 mixed solids sample was prepared with a molar ratio of 0.41 Na2O (4 and 10 mol%) was added in the form of sodium nitrate prior to calcination in air in the temperature range 500–1000C. Solid-solid interactions between V2O5 and Al2O3 were studied using DTA and TG curves and their derivatives together with XRD techniques.The results obtained showed that Na2O interacted with V2O5 at temperatures starting from 500C to yield a sodium/vanadium compound, Na0.3V2O5 which remained stable and decomposed in part by heating at 1000C. V2O5 exists in orthorhombic and monoclinic forms in the case of pure mixed solids and those containing 4 mol% of Na2O and preheated at 500C, and in monoclinic form in the case of the mixed solid doped with 10 mol% of Na2O.Heating of pure and doped mixed oxide solids at 650C resulted in the conversion of most of the V2O5 into AlVO4. Doping with sodium oxide enhanced the solid-solid interaction between V2O5 and Al2O3 at 650C to produce AlVO4. The produced AlVO4 decomposed completely on heating at 700C to form -Al2O3 and V2O5, (orthorhombic and monoclinic forms).The presence of Na2O was found to decrease the relative intensity of the diffraction lines of -Al2O3 (corundum) produced at 750C which indicated some kind of hindrance of the crystallization process.Heating of pure and doped mixed solids at 1000C resulted in a further crystallization of acorundum together with V2O5 and sodium vanadate, Na0.3V2O5. However, the intensities of diffraction lines relative to those of the sodium vanadium compound were found to decrease markedly by heating at 1000C, indicating partial thermal decomposition into vanadium and aluminium oxides.  相似文献   

19.
Mn/Fe mixed oxide solids doped with Al2O3 (0.32-1.27 wt.%) were prepared by impregnation of manganese nitrate with finely powdered ferric oxide, then treated with different amounts of aluminum nitrate. The obtained samples were calcined in air at 700-1000 °C for 6 h. The specific surface area (SBET) and the catalytic activity of pure and doped precalcined at 700-1000 °C have been measured by using N2 adsorption isotherms and CO oxidation by O2. The structure and the phase changes were characterized by DTA and XRD techniques. The obtained results revealed that Mn2O3 interacted readily with Fe2O3 to produce well-crystallized manganese ferrite (MnFe2O4) at temperatures of 800 °C and above. The degree of propagation of this reaction increased by Al2O3-doping and also by increasing the heating temperature. The treatment with 1.27 wt.% Al2O3 followed by heating at 1000 °C resulted in complete conversion of Mn/Fe oxides into the corresponding ferrite phase. The catalytic activity and SBET of pure and doped solids were found to decrease, by increasing both the calcination temperature and the amount of Al2O3 added, due to the enhanced formation of MnFe2O4 phase which is less reactive than the free oxides (Mn2O3 and Fe2O3). The activation energy of formation (ΔE) of MnFe2O4 was determined for pure and doped solids. The promotion effect of aluminum in formation of MnFe2O4 was attributed to an effective increase in the mobility of reacting cations.  相似文献   

20.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号