共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vascular endothelial growth factors(VEGFs)respectively bind to each of three receptor tyrosine kinases (RTKs),known as Flt-1,KDR and Flt-4.Since VEGFs and their respective families of receptor tyrosine... 相似文献
3.
Differences in Sensitivity to UVC, UVB and UVA Radiation of a Multidrug-Resistant Cell Line Overexpressing P-Glycoprotein 总被引:7,自引:0,他引:7
G. S. Trindade M. A. M. Capella L. S. Capella O. R. Affonso-Mitidieri V. M. Rumjanek 《Photochemistry and photobiology》1999,69(6):694-699
Multidrug resistance (MDR) is the phenomenon in which cultured tumor cells, selected for resistance to one chemotherapeutic agent, simultaneously acquire resistance to several apparently unrelated drugs. The MDR phenotype is multifactorial. The best-studied mechanism involves the expression of a membrane protein that acts as an energy-dependent efflux pump, known as P-glycoprotein (Pgp), capable of extruding toxic materials from the cell. In this work, resistance to UVA radiation, but not to UVC nor UVB, was observed in an MDR leukemia cell line. This cell line overexpresses Pgp. To study the role of Pgp in the resistance to UVA radiation, two MDR modulators or reversing agents (verapamil and cyclosporin A) capable of blocking Pgp activity were used. Cell viability was assessed and the techniques of flow cytometry and fluorescence microscopy were employed to measure the extrusion of rhodamine 123 by the efflux pump. The results show that MDR modulators did not modify the resistance to UVA radiation. Furthermore, although cell viability was not significantly altered, Pgp function was impaired after UVA treatment, suggesting that this glycoprotein may be a physical target for oxidative damage, and that other factors may be responsible for the UVA resistance. In agreement with this, it was found that the resistant cell line presented a higher catalase activity than the parental (non-MDR) cell line. 相似文献
4.
Elineides Santos Silva Gabriela Benedito Machado Adriana Lino‐dos‐Santos‐Franco Christiane Pavani 《Photochemistry and photobiology》2019,95(2):644-649
Natural extracts (NE) with antioxidant properties can minimize the effects of photoaging. Photobiomodulation (PBM) has proven to be a useful tool for the modulation of cell metabolism. Here, we investigate the associations of antioxidants with PBM with the aim of promoting skin rejuvenation. We began with standardization of the experimental protocol. Extracts of chamomile, rosemary, blueberry, green tea, figs, pomegranate and nutwood were tested. A custom irradiation system (366 ± 10 nm) was used to simulate sun exposure. A light emitting diode system (640 ± 12.5 nm) was used for PBM. Viability assessments were performed by the (3‐(4,5‐Dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) MTT assay method. Based on the results, radiant exposure to UVA was defined as 9 and 1 J cm?2 for PBM. Extract concentrations were established on the basis of dark toxicities, which ranged from 0.01% to 0.3%. The data show that PBM is a promising therapy to restore keratinocytes after UVA damage; however, the detailed mechanism and effects require further exploration. Moreover, although the combination of PBM with NE may be a useful strategy, the choice of a NE is challenging, since the working concentration and other properties, such as photosensitivity, may bring about unwanted results. 相似文献
5.
6.
Benjamin R. Vowels Elisa K. Yoo Francis P. Gasparro 《Photochemistry and photobiology》1996,63(5):572-576
Whereas previous studies have indicated that DNA damage as a result of 8-methoxypsoralen (8-MOP) and UVA treatment leads to cell death, this study establishes the minimum concentrations of 8-MOP and UVA necessary to induce apoptosis in human T-lymphocytic and mono-cytic cell lines. In order to assess apoptosis, we used fluorescent microscopy to examine changes in light scattering as well as internucleosomal DNA fragmentation. Generation of a dose response curve showed that the minimum combination of UVA and 8-MOP that was necessary to induce greater than background levels of apoptosis within 24 h of treatment was 0.5 J/cm2 UVA and 12.5 ng/mL of 8-MOP. A striking observation was that UVA alone at doses 1.0 J/cm2 , but not 8-MOP alone (6300 ng/mL), induced significant apoptosis in the Sup-T1 cell line within 24 h. Although the percentage of apoptotic Sup-T1 cells induced by UVA alone was not as great as that of 8-MOP and UVA in combination, a highly significant correlation between the product of the concentration of 8-MOP (ng/mL) times the dose of UVA (J/ cm2 ) and the percentage of apoptotic cells was observed. This correlation provides an important tool for studying the relationship of UVA-induced DNA damage to apoptosis induction. Moreover, it will provide a means by which early events in the apoptotic pathway can be dissected. 相似文献
7.
Kavya Shaj Rebekah J. Hutcherson Michael G. Kemp 《Photochemistry and photobiology》2020,96(1):105-112
The ATR protein kinase has well-described roles in maintaining genomic integrity during the DNA synthesis phase of the cell cycle. However, ATR function in cells that are not actively replicating DNA remains largely unexplored. Using HaCaT and telomerase-immortalized human keratinocytes maintained in a confluent, nonreplicating state in vitro, ATR was found to be robustly activated in response to UVB radiation in a manner dependent on the nucleotide excision repair factor and DNA translocase XPB. Inhibition of ATR kinase activity under these conditions negatively impacted acute cell survival and cytotoxicity and severely inhibited the ability of UVB-irradiated HaCaT keratinocytes to proliferate upon stimulation with growth factors. Furthermore, ATR kinase inhibition in quiescent HaCaT keratinocytes potentiated UVB mutagenesis at the hypoxanthine phosphoribosyltransferase locus. Though ATR inhibition did not impact the rate of removal of cyclobutane pyrimidine dimers from genomic DNA, elevated levels of PCNA mono-ubiquitination and chromatin-associated PCNA and RPA indicate that excision gap-filling synthesis was altered in the absence of ATR signaling. These results indicate that the ATR kinase plays important roles in preventing mutagenesis and in promoting the proliferative potential of quiescent keratinocytes exposed to UVB radiation. 相似文献
8.
9.
Cell Cycle Kinetics Following UVA Irradiation in Comparison to UVB and UVC Irradiation 总被引:1,自引:0,他引:1
Annemarie de Laat Marloes van Tilburg Jan C. van der Leun Willem A. van Vloten Frank R. de Gruijl 《Photochemistry and photobiology》1996,63(4):492-497
Abstract— There is limited information about the carcinogenic effect of longwave ultraviolet radiation (UVA: 315-400 nm). In particular very little is known about the relevant genotoxic damage caused by physiological doses of UVA radiation. A general response of cells to DNA damage is a delay or arrest of the cell cycle. Conversely, such cellular responses after UVA irradiation would indicate significant genotoxic damage. The aim of this study is to compare cell cycle kinetics of human fibroblasts after UVC (190-280 nm radiation), UVB (280-315 nm radiation) and UVA irradiation. Changes in the cell cycle kinetics were assessed by bivariate flow cytometric analysis of DNA synthesis and of DNA content. After UVC, UVB or UVA irradiation of human fibroblasts a suppression was seen of bromodeoxyuridine (BrdU) incorporation at all stages of S phase. The magnitude of this suppression appeared dose dependent. Maximum suppression was reached at 5-7 h after UVB exposure and directly after UVA exposure, and normal levels were reached 25 h after UVB and 7 h after UVA exposure. The lowered BrdU uptake corresponded with a lengthening of the S phase. No dramatic changes in percentages of cells in G1 , S and G2 /M were seen after the various UV irradiations. Apparently, UVA irradiation, like UVB and UVC irradiation, can temporarily inhibit DNA synthesis, which is indicative of genotoxic damage. 相似文献
10.
Nichole E. M. Kaufman Simran Dhingra Seetharama D. Jois Maria da Graa H. Vicente 《Molecules (Basel, Switzerland)》2021,26(4)
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review. 相似文献
11.
Abstract— Since Hayflick's pioneering work in the early sixties, human diploid fibroblasts have become a widely accepted in vitro model system. Recently, Bayreuther and co-workers extended this experimental approach showing that fibroblasts in culture resemble, in their design, the hemopoietic stem-cell differentiation system. They found that the chemical agent mitomycin C accelerates the differentiation pathway from mitotic to postmitotic fibroblasts. We measured the response of endogenous glutathione levels after UVA irradiation (320-400 nm) in mitotic and mitomycin C-induced postmitotic human skin fibroblasts and foreskin-derived keratinocytes. The initial levels in mitotic foreskin derived human fibroblasts were 14.4 nmol glutathione per mg protein, whereas a 30% higher value was obtained in matching foreskin-derived keratinocytes. Similiar elevated levels of this important intracellular free radical scavenging system were found in fibroblasts of a donor suffering from xeroderma pigmentosum. Furthermore, three to four times higher levels of glutathione in mitomycin C-treated mitotic fibroblasts have been determined. In mitotic skin fibroblasts, UVA irradiation resulted in a depletion of glutathione up to 90% following a fluence of 1.0 MJ/m2UVA radiation. Higher initial glutathione levels were found in keratinocytes and mitomycin C-treated skin fibroblasts. In these fibroblasts a 70% depletion was detected and a much lower depletion (10-20%) was seen in some keratinocyte cell lines following fluences up to 1.0 MJ/m2. The depletion in skin fibroblasts was retained after 24 h following a fluence of 0.75 MJ/m2UVA light. In view of the fact that glutathione has been shown to be involved in a variety of metabolic processes and plays a role in cellular protection against UVA radiation, our results imply that the fibroblast differentiation system is a very useful tool to unravel the complex mechanism of UVA-induced oxidative stress. 相似文献
12.
Abstract— Ultraviolet B irradiation has been believed to decrease or impair the activity of reactive oxygen species (ROS) scavenging enzymes such as superoxide dismutase (SOD) in the skin. It has been recently reported that two isozymes of SOD, namely copper-zinc SOD (Cu-Zn SOD) and manganese SOD (Mn SOD), exist in mammalian cells and that the two enzymes play different roles in living systems. The aim of this study was to investigate changes in SOD activities and protein levels in cultured human keratinocytes after acute UVB irradiation. In addition, the protein levels of Cu-Zn SOD and Mn SOD were quantified separately. A single exposure to UVB irradiation produced an increase in SOD activity and protein level that peaked immediately after UVB irradiation, after which a decline was observed, with subsequent recovery to baseline levels 24 h after irradiation. In individual assays of Mn SOD and Cu-Zn SOD, the amount of Mn SOD protein decreased and then gradually recovered 24 h after irradiation. In contrast, the amount of Cu-Zn SOD protein increased immediately after UVB irradiation, and then gradually declined. To evaluate the mechanisms of these changes, we examined the effects of the cytokines, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α), which can be secreted from keratinocytes after UVB irradiation, on the SOD activity and protein levels in keratinocytes. Interleukin-la and TNF-α enhanced both the SOD activity and protein level of Mn SOD, while these cytokines had no effect on Cu-Zn SOD protein levels in cultured human keratinocytes after incubation for 24 h. Furthermore, when neutralizing antibodies against IL-1α and TNF-α were added separately or together to the culture medium before UVB irradiation, the recovery of total SOD activity and Mn SOD protein level were markedly inhibited 24 h after irradiation. Our results suggest that significant increases in SOD activity and protein level occur as a cutaneous antioxidant defense mechanism that protects against the cytotoxicity as a result of UVB irradiation, and that this increase in SOD is attributed to Cu-Zn SOD. The Cu-Zn SOD and Mn SOD protein levels changed in a different manner after UVB irradiation. The former may participate in an early phase and the latter in a late phase defense mechanism directed against oxidant cytotoxicity through UVB irradiation. In addition, the recovery of Mn SOD to baseline levels 24 h after UVB irradiation seems to be mediated through cytokines such as IL-1α and TNF-α, which are secreted from keratinocytes. 相似文献
13.
14.
Vascular endothelial growth factor (VEGF) is a multifunctional cytokine that plays a major role in angiogenesis. Alternative
splicing causes the production of several different isoforms (VEGF121, 145, 165, 183, 189, 206). VEGF is essential for tumor
angiogenesis, and several studies have correlated elevated VEGF levels with tumor stage, metastases, and progression. We now
report the isolation by phage display of human single-chain antibody fragment (scFv) anti-VEGF165. After four rounds of panning
against VEGF165, 40 out of 90 phage clones displayed VEGF165-binding activity. One of the positive clones, designated B8,
bound to VEGF165 with relatively high affinity and neutralized VEGF165 bioactivity in vitro. The B8 clone was expressed in
the soluble form in Escherichia coli HB2151 and purified by immobilized metal affinity chromatography. The purified scFv recognized VEGF165 with the K
D of 1.80 × 10−8 M without cross-reaction to VEGF121. In addition to binding, the purified scFv could does-dependently inhibit VEGF165-induced
human umbilical vein-derived endothelial cells proliferation. Together with its fully human mature, B8 scFv may have therapeutic
implications in therapy of angiogenesis-dependent diseases. 相似文献
15.
UVB Radiation Induced Increase in Quercetin: Kaempferol Ratio in Wild-Type and Transgenic Lines of Petunia 总被引:1,自引:0,他引:1
Ken G. Ryan Kenneth R. Markham Stephen J. Bloor J. Marie Bradley Kevin A. Mitchell Brian R. Jordan 《Photochemistry and photobiology》1998,68(3):323-330
The use of genetically modified plants offers unique opportunities to study the role of specific flavonoids in plant UVB protection. Along with a parental wild-type Mitchell Petunia, two transgenic lines with altered flavonoids were also examined; Lc with enhanced levels of antho-cyanins due to the action of a maize flavonoid regulatory gene Leaf color, and AFLS that carries an antisense fla-vonol synthase construct and is known to have reduced flavonol levels in flowers. All three lines were grown in near ambient sunlight, sunlight lacking UVB (280–320 nm) radiation and sunlight with 25% added UVB. Ultra-violet-B radiation induced significant reductions in the rates of leaf expansion and seedling growth in all three lines. The presence of anthocyanins did not appear to afford Lc plants any special protection from UVB. Ul-traviolet-B treatment induced increases in total flavonol content in young plants of all three lines, and this effect decreased with increasing leaf age. Notably, increasing UVB levels led to an increase in the ratio of quercetin: kaempferol with all three cultivars. The AFLS transgenic, contrary to expectations based on its genetic construction, had normal levels of flavonols in the leaves and the highest Q:K ratio of the three cultivars. This transgenic was the least susceptible to UVB, which may indicate an enhanced protective role for quercetin. Because both quercetin and kaempferol have similar UVB screening properties, quercetin may exert this role by other means. 相似文献
16.
Mutagenicity of Photodynamic Therapy as Compared to UVC and Ionizing Radiation in Human and Murine Lymphoblast Cell Lines 总被引:1,自引:0,他引:1
Helen H. Evans Min-Fen Horng Marlene Ricanati J. Thorn Deahl† Nancy L. Oleinick 《Photochemistry and photobiology》1997,66(5):690-696
Abstract— The mutagenicity of photodynamic therapy (PDT) using red light and either Photofrin® (porfimer sodium) (PF) or aluminum phthalocyanine (AIPc) as the photosensitizer was determined at the thymidine kinase (TK) locus in the human lymphoblastic cell lines, TK6 and WTK1, and was compared to the mutagenicity of UVC and X-radia-tion in these cells as well as the mutagenicity of PDT in murine L5178Y lymphoblastic cell lines. Photodynamic therapy was found not to be mutagenic in TK6 cells, which possess an active p53 gene and which are relatively deficient in recombination and repair of DNA double-strand breaks. In contrast, PDT with either sensitizer was significantly mutagenic in WTK1 cells, which harbor an inactivating mutation in the p53 gene and are relatively efficient in recombination and double-strand break repair as compared to TK6 cells. The induced mutant frequency in WTK1 cells with PF as the photosensitizer was similar to that induced by UVC radiation but lower than that induced by X-radiation at equitoxic faiences/ doses. The mutant frequency induced by PDT in WTK1 cells with either photosensitizer was much lower than that induced in murine lymphoblasts at equitoxic fluences. The TK6 and WTK1 cells did not differ in their sensitivity to the cytotoxic effects of PDT, but the level of PDT-induced apoptosis was greater in TK6 than in WTK1 cells. These results indicate that the mutagenicity of PDT varies in different types of cells and may be related to the repair capabilities as well as the p53 status of the cells. 相似文献
17.
Annemarie de Laat Ellemiek D. Kroon Frank R. de Gruijl 《Photochemistry and photobiology》1997,65(4):730-735
Abstract— Ultraviolet A (UVA,315–400 nm) radiation is known to be a complete carcinogen, but in contrast to UVB (280-315 nm) radiation, much of the cell damage is oxygen dependent (mediated through reactive oxygen species), and the dominant premutational DNA lesion(s) remains to be identified. To investigate further the basic differences in UVA and UVB carcinogenesis, we compared in vivo cellular responses, viz. cell cycle progression and transient p53 expression in the epidermis, after UVA1 (340-400 nm) exposure with those after broadband UVB exposure of hairless mice. Using flow cytometry we found a temporary suppression of bromodeoxyuridine (BrdU) uptake in S-phase cells both after UVB and UVA1 irradiation, which only in the case of UVB is followed by an increase to well over control levels. With equally erythemogenic doses (1-2 MED), the modulation of BrdU uptake was more profound after UVB than after UVA1 irradiation. Also, a marked transient increase in the percentage of S-phase cells occurred both after UVB and after UVA1 irradiation, but this increase evolved more rapidly after UVA1 irradiation. Further, p53 expression increased both after UVB and UVA1 irradiations, with peak expression already occurring from 12 to 24 h after UVA1 exposure and around 24 h after UVB exposure. Overall, UVA1 radiation appears to have less of an impact on the cell cycle than UVB radiation, as measured by the magnitude and duration of changes in DNA synthesis and cells in S phase. These differences are likely to reflect basic differences between UVB and UVA1 in genotoxicity and carcinogenic action. 相似文献
18.
The vascular endothelial growth factor (VEGF) and its receptor tyrosine kinases VEGFR-2 or kinase insertdomain receptor (KDR) have emerged as attractive targets for the design of novel anticancer agents. In the present work, molecular docking method combined with three dimensional quantitative structure-activity relationships (comparative molecular field analysis (CoMFA) and comparative molecular similarity indice analysis (CoMSIA)) to analyze the possible interactions between KDR and those derivatives which acted as selective inhibitors. The CoMFA and CoMSIA models gave a cross-validated coefficient Q2 of 0.713 and 0.549, non-cross-validated R2 values of 0.974 and 0.878, and predicted R2 values of 0.966 and 0.823, respectively. The 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. The information obtained from 3D-QSAR and docking studies were very helpful to design novel selective inhibitors of KDR with desired activity and good chemical property. 相似文献
19.
20.
Bogush T. A. Kaliuzhny S. A. Basharina A. A. Bogush E. A. Kirsanov V. Yu. Kosorukov V. S. Burova O. S. Davydov M. M. Baryshnikova M. A. 《Moscow University Chemistry Bulletin》2019,74(6):296-299
Moscow University Chemistry Bulletin - Abstract—Molecular heterogeneity in seven human metastatic melanoma cells lines is revealed using a double immunofluorescent assay by flow cytometry. It... 相似文献