首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Reaction of a freshly prepared Ni(OH)2?2 x (CO3) x ·yH2O with maleic acid in H2O at room temperature afforded [Ni(H2O)6][Ni(H2O)2(C4H2O4)]·4H2O, which consists of [Ni(H2O)6]2+ cations, [Ni(H2O)2(C4H2O4)]2? anions and lattice H2O molecules. Ni atoms in cations are octahedrally coordinated and Ni atoms in anions are each octahedrally coordinated by bidentate chelating maleato ligands and two water molecules at trans positions. Cations and anions are interlinked by hydrogen bonds to form 1D chains, which are hexagonally arranged and connected by the lattice water molecules. When heated in a flowing argon stream, the compound decomposes, with complete dehydration being followed by dissociation of nickel maleate into NiO and maleic anhydride.  相似文献   

3.
4.
Two Cu(II) hydroxo succinates [Cu3(H2O)2(OH)2(C4H4O4)2]?·?4H2O (1) and [Cu4(H2O)2(OH)4(C4H4O4)2]?·?5H2O (2) and one Cu(II) hydroxo glutarate [Cu5(OH)6(C5H6O4)2]?·?4H2O (3) have been prepared and structurally characterized by single crystal X-ray diffraction methods. They feature 1D and 2D copper oxygen connectivity of elongated {CuO6} octahedra in “4?+?1?+?1” and “4?+?2” coordination geometries. Within 1, linear trimers of three edge-sharing {CuO6} octahedra are connected into copper oxygen chains, which are bridged by the anti conformational succinate anions to generate 2D layers with mono terminally coordinating gauche succinate anions on both sides. The layers are assembled into a 3D framework by interlayer hydrogen bonds with lattice H2O molecules distributed in channels. Different from 1, the principal building units in 2 are linear tetramers of four edge-sharing {CuO6} octahedra. The tetramers are condensed into copper oxygen chains and the succinate anions interlink them into a 3D framework with triangular channels filled by lattice H2O molecules. The {CuO6} octahedra in 3 are edge-shared to form unprecedented 2D inorganic layers with mono terminally coordinating glutarate anions on both sides. Interlayer hydrogen bonding interactions are responsible for supramolecular assembly of the layers into a 3D framework with lattice H2O molecules in the channels. The inorganic layers in 3 can be described as hexagonal close packing of oxygen atoms with the Cu atoms in the octahedral cavities. The title compounds were further characterized by elemental analyses, IR spectra and thermal analyses.  相似文献   

5.
Compounds p-HOOCC6F4COOH · H2O (H2L · H2O), [Tb2(H2O)4(L)3 · 2H2O] n (I), and Tb2(Phen)2(L)3 · 2H2O (II) are synthesized. According to the X-ray structure analysis data, the crystal structure of H2L · H2O is built of centrosymmetric molecules H2L and molecules of water of crystallization. The crystal structure of compound I is built of layers of coordination 2D polymer [Tb2(H2O)4(L)3] n and molecules of water of crystallization. The ligands are the L2? anions performing both the tetradentate bridging and pentadentate bridging-chelating functions. The coordination polyhedron TbO9 is a distorted three-capped trigonal prism. Acid H2L manifests photoluminescence in the UV region (??max = 368 nm). Compounds I and II have the green luminescence characteristic of the Tb3+ ions, and the band with ??max = 545 nm (transition 5 D 4?? 7 F 5) is maximum in intensity. The photoluminescence intensity of compound II is higher than that for compound I.  相似文献   

6.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

7.
8.
采用TG-DSC研究了ZnSO4·CO(NH2)2·2H2O和MgCl2·NH4Cl·6H2O的热分解反应,并对其中的脱水过程及部分分解过程进行了动力学计算,由Fridman、Ozawa-Flynn-Wall、ASTME698三种方法得出峰温时的活化能值与指前因子值,通过优化选择出了热分解过程最佳机理函数.  相似文献   

9.
10.
11.
The syntheses and crystal structures of the closely related but non-isostructural Cd2(C19H21N3O3F)4(H2O)2?·?4H2O (1) and Pb2(C19H21N3O3F)4?·?4H2O (2) are described, where C19H21N3O3F? is enrofloxacinate (enro). Both compounds contain centrosymmetric, binuclear, neutral complexes incorporating a central diamond-shaped M2O2 (M?=?Cd, Pb) structural unit. The Cd2+ coordination polyhedron in 1 is a CdO6 trigonal prism, including one coordinated water. The Pb2+ coordination polyhedron in 2 can be described as a very distorted square-based PbO5 pyramid, although two additional short Pb?···?O (<3.1?Å) contacts are also present. In the crystal of the cadmium complex, O–H?···?O hydrogen bonds lead to a layered structure. In the lead compound, O–H?···?O and O–H?···?N interactions lead to chains in the crystal. Crystal data: 1: C76H96Cd2F4N12O18, M r?=?1766.45, triclinic, P 1, a?=?12.185(2)?Å, b?=?12.306(3)?Å, c?=?14.826(3)?Å, α?=?68.15(3)°, β?=?70.28(3)°, γ?=?86.11(3)°, V?=?1938.2(7)?Å3, Z?=?1, T?=?298 K, R(F)?=?0.030, wR(F 2)?=?0.079. 2: C76H88F4N12O16Pb2, M r?=?1920.00, triclinic, P 1, a?=?12.0283(4)?Å, b?=?12.7465(4)?Å, c?=?13.0585(4)?Å, α?=?83.751(1)°, β?=?74.635(1)°, γ?=?81.502(1)°, V?=?1904.3(1)?Å3, Z?=?1, T?=?298?K, R(F)?=?0.021, wR(F 2)?=?0.049.  相似文献   

12.
The molecular and crystal structure of the title complex (I) obtained by addition of tin fluoride in a hydrofluoric acid solution to 18-crown-6 in methanol was investigated by X-ray structure analysis. The crystals are monoclinic, space group P21/n, a = 13.497(3), b = 7.806(2), c = 9.892(2) Å, β = 95.57(3)°, Z = 2 for C12H32F4O10Sn. In the polymer chain, the crown ether molecules alternate with the inorganic complexes [trans-SnF4(H2O)2] and are linked to them by O-H...O type hydrogen bonds involving the intermediate water molecules. The weak C-H...F interactions bind the chains into the layers which are parallel to the xz plane.  相似文献   

13.
From hydrothermal treatment of benzene-1,2-diamine, pyrocatechol, and MoO3 in acetic acid solution, a new compound, [Mo22-O)2(C6H4O2)2(H2O)] · (C8H9N2)2 · 2H2O (I), constructed from pyrocatechol chelated dinuclear molybdenum units and 2-methylbenzimidazole has been synthesized. Single-crystal structure analysis reveals that the compound crystallizes in the monoclinic space group P21/c with a = 23.365(2), b = 7.2214(5), c = 19.3021(16) β = 97.929(4), V = 3225.6(5), Z = 4, M = 808.46, ρc = 1.665 g/cm3, μ(MoK α) = 0.84 mm?1, F(000) = 1608, the final R = 0.0622 and wR = 0.1484 for 7385 independent reflections with R int = 0.0393. Interestingly, an in situ condensation between acetic acid and benzene-1,2-diamine has occurred, and the unexpected 2-methyl-1-H-benzo[d] imidazoles serve as counterions and N-H donors to form stable hydrogen-bond network in the crystal. Furthermore, intermolecular hydrogen bonds are found among the cations, anions and crystalline water molecules. The double nuclear molybdenum units are connected by O-H...O hydrogen bonds with the crystalline water molecules to form one-dimensional chains, and the chains are further joined together by N-H...O to form a quasi-two dimensional structure.  相似文献   

14.
Tetraalkylammonium chlorides peroxosolvates (CH3)4NCl·H2O2 and (C2H5)4NCl·H2O2 were synthesized. The composition of the solvates was proved by chemical analysis; their X-ray patterns, IR spectra, and thermograms were obtained. The solubility of the solvates in water and their stability in aqueous solutions were investigated.  相似文献   

15.
Single crystals of the Rb4H2I2O10· 4H2O were synthesized for the first time and studied by X-ray diffraction analysis. The crystals are monoclinic, a = 7.321(6) Å, b = 12.599(8) Å, c = 8.198(8) Å, = 96.30(7)°, Z = 2, space group P21/c. The H2I2O10 4– anion is formed by the edge-sharing IO6 octahedra. The anions are united by hydrogen bonds into a chain running along the x axis. The chains are combined by water molecules into a three-dimensional structure through hydrogen bonds. The compound is a proton conductor. The conductivity values measured at 20–60°C vary within 10–6 to 10–4 ohm–1 cm–1.  相似文献   

16.
The title compound (C6N3H18)2Ti4O4(C2O4)7(4H2O 1 (C13H22N3O18Ti2, Mr = 604.14) was synthesized by the reaction of Ti(SO4)2, H2C2O4(2H2O and N-(2-ammonioethyl)- piperazinium (AEPP) in aqueous solution. The single-crystal X-ray analysis has revealed that 1 crystallizes in the triclinic system, space group Pī with a = 9.1437(6), b = 11.4991(10), c = 11.6975(8)A, α = 96.2915(18), β = 107.998(3), γ = 104.276(4)°, V = 1110.35(14)A3, Z = 2, Dc = 1.807 g/cm3, F(000) = 618, μ = 0.815 mm-1, the final R = 0.0463 and wR = 0.1264 for 3718 observed reflections with I > 2σ(I). X-ray crystal-structure analysis suggests that compound 1 consists of [Ti4O4(C2O4)7]6- anion and two protonated N-(2-ammonioethyl)piperazinium cations. The anions are linked into an infinite chain through Ti4O4(C2O4)8 by sharing the oxalates as bridging ligands.  相似文献   

17.
The title complexes, K3[Cd(Dtpa)] (H5Dtpa = diethylenetriamine-N,N,N,N′,N′-pentaacetic acid, (I)), K2[Cd(H2O)4][Cd(Edta)(H2O)]2 · 2H2O (H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid, (II)), and Na2[Cd(H2O)4][Cd(Edta)(H2O)]2 · 2H2O (III), were prepared, and their compositions and structures were determined by elemental analyses, IR spectra, and single-crystal X-ray diffraction techniques, respectively. In complex I, the Cd is seven-coordinated by one Dtpa ligand yielding a pseudo-monocapped trigonal prism conformation, and the complex crystallizes in the triclinic crystal system with the Pi space group. The crystal data are as follows: a = 8.7300(17), b = 9.1200(18), c = 15.110(3) Å, α = 95.52(3)°, β = 96.59(3)°, γ = 99.63(3)°, V = 1170.0(4) Å3, Z = 2, ρ = 1.754 g/cm3, μ = 1.519 mm?1, F(000) = 616, R = 0.0644 and wR = 0.1712 for 3842 observed reflections with I ≥ 2σ(I). For complex II, in the [Cd(Edta)(H2O)]2? complex anion the Cd2+ ion is seven-coordinated by one Edta ligand and one water molecule, yielding a pseudo-pentagonal bipyramid conformation. In the [Cd(H2O)4]2+ cation, the bridged Cd is six-coordinated, yielding an almost standard octahedral conformation. The complex crystallizes in the monoclinic system with P21/n space group. The crystal data are as follows: a = 9.098(3), b = 16.442(6), c = 12.023(4) Å, β = 91.053(6)°, V = 1798.3(12) Å3, Z = 2, ρ = 2.098 g/cm3, μ = 2.086 mm?1, F(000) =1124, R = 0.0406 and wR = 0.1152 for 3680 observed reflections with I ≥ 2σ(I). In complex III, the conformations of Cd2+ ions are similar to those of the potassium salt complex, and the complex also crystallizes in the monoclinic crystal system with the P21/n space group. The crystal data are as follows: a = 9.134(7), b = 16.500(13), c = 12.075(10) Å, β = 91.054(12)°, V = 1820(2) Å3, Z = 2, ρ = 2.015 g/cm3, μ = 1.856 mm?1, F(000) = 1092, R = 0.0363 and wR = 0.0879 for 3707 observed reflections with I ≥ 2σ(I).  相似文献   

18.
The infrared, Raman and inelastic neutron scattering (INS) spectra of TSA·6H2O and TPA·6H2O are in agreement with those expected for the presence of H5O+2 ions. Force fields for different assignment schemes are compared with the observed vibrational frequencies and the INS spectral profile. All but two schemes are eliminated. Whilst low-resolution INS spectroscopy cannot distinguish between these two schemes, the orientations of the vibrational ellipsoids for one scheme are in better agreement with those reported from low-temperature crystallographic studies of the H5O+2 ion.  相似文献   

19.
The crystal structure of Ca(ReO4)2 · 2H2O was determined from single-crystal X-ray diffractometer data. The compound is monoclinic, space group C2, with unit cell parameters a = 18.90(4), b = 7.066(3), c = 14.17(2) Å, β = 115.4(4)°, Z = 8. The structure was solved from 4043 observed reflections and refined to an index R of 0.057. The rhenium atoms are tetrahedrally coordinated and the calcium atoms with eight coordination give rise to Ca2(H2O)4O10 polyhedra.  相似文献   

20.
GdⅢ的配合物常被用作MRI造影剂[1,2]. GdⅢ的离子半径和电子结构分别为0.107 8 nm和高自旋f 7, 理论预测应与氨基多羧酸类配体形成稳定的九配位配合物[3~5]. 为证实理论预测并在此基础上寻找合适的可用于定向修饰的配体以及为提高GdⅢ配合物的脂溶性使其具有更好的细胞渗透性, 选择四齿配体nta和含有脂环烃的六齿配体Cydta分别合成了GdⅢ的配合物, 并测定了它们的分子结构. 结果显示, GdⅢ与nta形成九配位配合物, GdⅢ与Cydta形成八配位配合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号