首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The new quadridentate bischelating ligands 2 and 3 display in solution the typical absorption and emission properties expected for naphthalenediimide derivatives. Spectrophotometric studies show that systems 2 and 3 interact with Zn(II), Cd(II) and Cu(I) in CHCl3 or MeCN according to an apparent 1:1 stoichiometry. Molecular modelling, ESI-MS and 1H NMR experiments indicate that the complex species formed in the presence of stoichiometric amounts of metal ion are nonhelical [2 + 2] adducts. The metal-induced self-assembling process is signalled by an intense excimer-type emission caused by the intramolecular interaction of two naphthalenediimide subunits that face each other in the [2 + 2] adduct, as shown by molecular modelling studies. In the presence of excess metal ion, a disassembling process takes place, leading to a dinuclear complex with a 2:1 metal/ligand stoichiometry, in which the intramolecular excimer is no longer allowed to form because the interaction between the naphthalenediimide subunits has been lost. Thus, the overall metal-induced assembling/disassembling process is signalled by the appearance and disappearance of the excimer band in the emission spectrum.  相似文献   

2.
Lei Zhu 《Tetrahedron》2004,60(34):7267-7275
A Cu(I) catalyzed Huisgen cycloaddition was engineered to afford products featuring intramolecular excimer formation (exciplex, 3) or intramolecular Förster resonance energy transfer (FRET, 6, 7). It was further demonstrated that this reaction could be silenced by ethylenediaminetetraacetic acid (EDTA), which prohibited the reduction of copper(II) sulfate to the catalytically active Cu(I) species by sodium ascorbate. Exogenous transition metal ions such as Zn2+ and Pb2+ were shown to competitively coordinate with EDTA thus releasing free Cu2+ for the subsequent reduction, and consequently restoring the reaction. The modulated catalysis showed metal ion concentration dependence and could be monitored by both HPLC and fluorescence. This study is a demonstration of a new sensing paradigm, where a catalytic organometallic reaction can be used as the signal amplifying module of a sensing application by engineering a regulatory element into the reaction process, analogous to an allosteric enzyme or an allosteric ribozyme system.  相似文献   

3.
用X射线光电子能谱(XPS)研究了Cu(II),Eu(III)和配体6,11-二甲基-7,10-二氮杂十六-5,11-二烯-2,4,13,15-四酮(H~4daaen)形成的单核、双核隔室配合物的电子结构和成键特性;观察到配体分子中有明显的电荷转移现象;并对Cu2p~3~/~2伴峰现象进行了分析。  相似文献   

4.
应用密度泛函理论(DFT)及含时密度泛函理论(TDDFT)方法研究了N-丁基-4,5-二[2-(苯胺基)乙胺基]-l,8萘酰亚胺红移型铜离子比率荧光探针的光物理性质. 通过探针分子与金属离子结合前后的几何构型优化, 结合自然键轨道分析, 揭示了探针分子对铜离子的识别作用. 通过激发态计算阐明了光诱导分子内电荷转移(ICT)机理. 研究结果表明, 由于Cu(II)离子络合导致萘胺脱氢, 带负电荷的胺基N原子与萘环形成C=N双键,延长了共轭体系; N的非键电子向Cu(II)离子的空d轨道转移一个电子, 抑制了Cu(II)离子的顺磁效应所导致的荧光淬灭, 受光激发后, 共轭N与萘环之间发生n→π*电子转移导致ICT效应和荧光红移.  相似文献   

5.
A new fluorescent macrocyclic structure (L1) bearing two naphthalene units at both ends of a cyclic polyaminic chain containing two phenanthroline units was investigated with potentiometric and fluorescence (steady-state and time-resolved) techniques. The fluorescence emission spectra show the simultaneous presence of three bands: a short wavelength emission band (naphthalene monomer), a middle emission band (phenanthroline emission), and a long-wavelength band. All three bands were found to be dependent on the protonation state of the macrocyclic unit (including the polyaminic and phenanthroline structures). The existence of the long-wavelength emission band is discussed and is shown to imply that a bending movement involving the two phenanthroline units leads to excimer formation. This is determined by comparison with the excimer emission formed by intermolecular association of 1,10-phenanthroline. With ligand L1, excimer formation occurs only at pH values above 4. At very acidic pH values, the protonation of the polyamine bridges is extensive leading to a rigidity of the system that precludes the bending movement. The interaction with metal cations Zn(II) and Cu(II) was also investigated. Excimer formation is, in these situations, increased with Zn(II) and decreased with Cu(II). The long-emission band is shown to present a different wavelength maximum, depending on the metal, which can be considered as a characteristic to validate the use of ligand L1 as a sensor for a given metal.  相似文献   

6.
The tripodal system 4, in which urea fragments are appended to the three terminal amine nitrogen atoms of a tris(2-aminoethyl)amine (tren) subunit, includes a Cu(II) ion and two anions X-, according to a cascade mechanism through three well defined stepwise equilibria in a DMSO solution. The first anion X- (halide, N3-, NCS-, NO2-, H2PO4-) seeks the Cu(II) centre coordinated by the tren moiety; the second anion X- interacts with the trisurea cavity, but this occurs only if the stronger H-bond acceptors, such as N3- and H2PO4-, are used. Binding of the second X- ion is favoured by the preorganising effect exerted by the metal and disfavoured by the steric and electrostatic repulsions between the anions. Under the appropriate conditions, heterodinuclear complexes of formula [Cu(II)(4)(Cl)(H2PO4)] can be obtained in solution, in which Cl- is bound to the metal centre and H2PO4- interacts with the trisurea compartment.  相似文献   

7.
Details of complex formation kinetics are reported for tetrakis(2-hydroxyethyl) substituted cyclen (L(1)) and cyclam (L(2)) with Cu(II) and Co(II). Stopped-flow kinetics and spectroscopic titration methods were employed for the activation parameters and stability constants, respectively. X-ray studies revealed that the pendant 2-hydroxyethyl groups are not equivalent: two are folded over the macrocycle and maintained by intramolecular hydrogen bonds while the others are extended and pointed away from the macrocyclic cavity. Complex formation kinetics and spectroscopic titration were performed in aqueous acidic buffer solutions. Thermodynamic and kinetic parameters revealed that the ring size of the macrocycles plays an extremely important role for each metal ion studied. Stopped-flow kinetic measurements explained the mechanism of the complex formation process of both Cu(II) and Co(II) which proceed in outer-sphere interactions with ligands. There are two steps in the complex formation of the system studied. The initial step is a second order reaction between the metal ion and macrocycle with a second order rate constant.  相似文献   

8.
The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu (II) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytotoxicity activities than free naringin without reducing cell viability.  相似文献   

9.
Three new transition metal tricyanomethanide complexes [Co(dpdo)(tcm)2] ( 1 ), [Cu(dpdo)(tcm)2] ( 2 ) and Cu(dpdo)2(tcm)2 ( 3 ) were synthesized and structurally characterized. In compound 1 each Co(II) ion is coordinated to four disorder tcm anions and one dpdo molecule to give a distorted octahedral geometry. In compound 2 each Cu(II) ion is surrounded by four tcm anions and one dpdo ligand to form a square bipyramidal geometry. Both compounds 1 and 2 display a µ1,5‐tcm bridged infinite chain structure. Interestingly, in compound 3 coordination geometry around the central ion is square‐planar, each Cu(II) ion is coordinated by two dpdo molecules to form a cationic part, the cationic parts is linked with the free tcm anionic parts via electrostatic attraction, leading to the formation of a mononuclear structure. Magnetic susceptibility measurement in the range 2 – 300 K indicates that there are antiferromagnetic couplings between adjacent metal ions in 1 (θ=?2.33 K, C=2.13 cm3·mol?1·K) and 2 (J=?0.30, g=2.20) respectively.  相似文献   

10.
The structures of the precipitates of free-radical poly(4-vinylpyridine) (Vpy), free-radical poly(2-Vpy) and isotactic poly(2-Vpy) with M(II)Cl2 (M = Co, Ni, Cu, Zn) obtained from solution have been investigated. The polymer compounds are similar to the known crystalline monomeric Vpy complexes and, with one exception, are crosslinked by the metal dichloride. Co(II) and Zn(II) are tetrahedrally coordinated by the polymer, while the Ni(II) and Cu(II) complexes are probably tetrahedral and square-planar, respectively. Because of the constraints of the polymeric ligands the stoichiometries of the complexes are not exactly the same as those of the monomeric Vpy complexes and from one to two Vpy units per metal halide are on average not coordinated. Atactic and isotactic poly(2-Vpy) showed marked differences with regard to coordination of Ni(II). The questions of stereochemistry of the coordinated metal ion, stoichiometry of the complexes, intermolecular versus intramolecular complexation of the polymer chain, and the influence of polymer tacticity on the crystallizability of polymer complexes are discussed.  相似文献   

11.
We here describe the first metal complex system in which electronic signals can be repeatedly extracted by converting bistable states related to an intramolecular ligand rotational motion, which is fueled by visible light. The molecular structure for relating an electron transfer and a motion consists of a copper center and a coordinated unsymmetrically substituted pyrimidine derivative, whose rotational isomerization causes an electrochemical potential shift. To harness light energy effectively through metal-to-ligand charge transfer (MLCT) excitation, we prepared a simple copper(I) complex coordinated by a 4-methyl-2-(6'-methyl-2'-pyridyl)pyrimidine and a bulky diimine. The thermodynamic and kinetic parameters of redox and rotational reactions were analyzed by cyclic voltammograms at variable temperatures, by considering four stable isomers related to copper(II)/(I) states and rotational isomeric states. The key feature of this compound is that the rotation is frozen in the copper(I) state (rate constant for the rotation, k(Ii→o) = 10(-4) s(-1)) but is active in the copper(II) state (k(IIi→o) = 10(-1) s(-1)) at 203 K. The compound makes a bypass route to the isomeric metastable copper(I) state, via a tentative copper(II) state formed by photoelectron transfer (PET) in the presence of a redox mediator, decamethylferrocenium ion (DMFc(+)), or upon a partial oxidation of the complex. Light- and heat-driven rotation in the copper(I) state with a potential shift (ΔE°' = 0.14 V) was analyzed by electrochemical measurements of the complex in the solution state. The rotor could be reset to the initial state by heating, thereby completing the cycle and enabling repeated operation fueled by light energy. A significant redox potential shift associated with the copper(II)/(I) transition accompanied the rotation, thereby providing a new type of molecular signaling system.  相似文献   

12.
The two tetradentate ligands H(2)L and H(2)L(Me) afford the slightly distorted square-planar low-spin Ni(II) complexes 1 and 2, which comprise two coordinated phenolate groups. Complex 1 has been electrochemically oxidized into 1(+), which contains a coordinated phenoxyl radical, with a contribution from the nickel orbital. In the presence of pyridine, 1(+) is converted into 1(Py) (+), an octahedral phenolate nickel(III) complex with two pyridines axially coordinated: An intramolecular electron transfer (valence tautomerism) is promoted by the geometrical changes, from square planar to octahedral, around the metal center. The tetradentate ligand H(2)L(Me), in the presence of pyridine, and the hexadentate ligand H(2)L(Py) in CH(2)Cl(2) afford, respectively, the octahedral high-spin Ni(II) complexes 2(Py) and 3, which involve two equatorial phenolates and two axially coordinated pyridines. At 100 K, the one-electron-oxidized product 2(Py) (+) comprises a phenoxyl radical ferromagnetically coupled to the high-spin Ni(II) ion, with large zero-field splitting parameters, while 3(+) involves a phenoxyl radical antiferromagnetically coupled to the high-spin Ni(II) ion.  相似文献   

13.
Wu J  Liu W  Ge J  Zhang H  Wang P 《Chemical Society reviews》2011,40(7):3483-3495
During the past decade, fluorescent chemosensors have become an important research field of supramolecular chemistry and have attracted great attention because of their simplicity, high selectivity and sensitivity in fluorescent assays. In the design of new fluorescent chemosensors, exploration of new sensing mechanisms between recognition and signal reporting units is of continuing interest. Based on different photophysical processes, conventional sensing mechanisms including photo-induced electron transfer (PET), intramolecular charge transfer (ICT), metal-ligand charge transfer (MLCT), twisted intramolecular charge transfer (TICT), electronic energy transfer (EET), fluorescence resonance energy transfer (FRET), and excimer/exciplex formation have been investigated and reviewed extensively in the literature. This tutorial review will mainly focus on new fluorescent sensing mechanisms that have emerged in the past five years, such as aggregation-induced emission (AIE) and C=N isomerization, which can be ascribed to fluorescence changes via conformational restriction. In addition, excited-state intramolecular proton transfer (ESIPT) has not been well reviewed yet, although a number of chemosensors based on the ESIPT mechanism have been reported. Thus, ESIPT-based chemosensors have been also summarized in this review.  相似文献   

14.
A new monostyryl boron dipyrromethene derivative (MS1) appended with two triazole units indicates the presence of Hg(2+) among other metal ions with high selectivity by color change and red emission. Upon Hg(2+) binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg(2+); the metal ions Ag(+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Fe(3+), K(+), Mg(2+), Mn(2+), Ni(2+), Pb(2+), and Zn(2+) cause only minor changes in the fluorescence of the system. The apparent association constant (K(a)) of Hg(2+) binding in MS1 is found to be 1.864 × 10(5) M(-1). In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg(2+) in living cells.  相似文献   

15.
The reconstituted zinc-myoglobin (ZnMb) dyads, ZnMb-[M(II)(edta)], have been prepared by incorporating a zinc-porphyrin (ZnP) cofactor modified with ethylenediaminetetraacetic acid (H(4)edta) into apo-Mb. In case of the monomeric ZnP(edta) cofactor coordinated by one pyridine molecule, ZnP(py)(edta), a spontaneous 1:1 complex with a transient metal ion was formed in an aqueous solvent, and the photoexcited singlet state of ZnP, (1)(ZnP)*, was quenched by the [Cu(II)(edta)] moiety through intramolecular photoinduced electron-transfer (ET) reaction. The rate constant for the intramolecular quenching ET (k(q)) at 25 degrees C was successfully obtained as k(q) = 5.1 x 10(9) s(-1). In the case of Co(2+), Ni(2+), and Mn(2+), intersystem crossing by paramagnetic effect was mainly considered between (1)(ZnP)* and the [M(II)(edta)] complex. For the ZnMb-[M(II)(edta)] systems, the intramolecular ET reaction between the excited singlet state of (1)(ZnMb)* and the [Cu(II)(edta)] moieties provided the slower quenching rate constant, k(q) = 2.1 x 10(8) s(-1), compared with that of the ZnP(py)(edta) one. Kinetic studies also presented the efficient fluorescence quenching of the (1)(ZnMb)*-[Co(II)(edta)] dyad. Our study clearly demonstrates that wrapping of the ZnP cofactor by the apoprotein matrix and synthetic manipulation at the Mb surface ensure metal ion-sensitive fluorescent dynamics of ZnMb and provides valuable information to elucidate the complicated mechanism of the biological photoinduced ET reactions of hemoproteins.  相似文献   

16.
This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueous solutions of EDA core PAMAM dendrimers with primary amine, succinamic acid, glycidol, and acetamide terminal groups. We employ extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the structures of Cu(II) complexes with Gx-NH2 EDA core PAMAM dendrimers in aqueous solutions at pH 7.0. The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dendrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 and G5-NH2 PAMAM dendrimers at pH 7.0.  相似文献   

17.
A binucleating ligand, incorporating four phenylhydrazone groups, 7,7′-methylene-bis[(E,E)-3,11-dimethyl-5,9-dioxa-4,10-diaza-3,10-tridecadiene-2,12-dione]phenylhydrazone (4) (mtph) was synthesized, its dinuclear Cu(II) complex prepared and its metal complex characterized by elemental analyses, 1H and 13C-n.m.r., i.r. and mass spectrometry. The elemental analysis, stoichiometry and spectroscopic data of the dinuclear Cu(II) complex indicate that the Cu(II) ions are coordinated to the ether oxygen and nitrogen atoms (C=N) of the tetrahydrazone, the with a 2:1 metal:ligand ratio. All spectral data support the proposed structure of mtph and its Cu(II) complex. In addion, the total energy and heat of formation (Figure 3) calculated for intramolecular hydrogen bonded and non-intramolecular hydrogen bonded tetrahydrazones (4, 5) by semiempirical AM1 calculations showed that tetrahydrazone (5) having intramolecular hydrogen bonds is more stable (ca. 10 kcal/mol) than the non-intramolecular hydrogen bonded form (4).  相似文献   

18.
Based on donor (D)-acceptor (A) biphenyl (b) type molecules, a family of fluorescent reporters with integrated acceptor receptors and noncoordinating and coordinating donor substituents of varying strength has been designed for ratiometric emission sensing and multimodal signaling of metal ions and protons. In part 2 of this series on such charge transfer (CT) operated mono- and bifunctional fluorescent devices, the cation coordination behavior of the sensor molecules bpb-R equipped with a proton- and cation-responsive 2,2':6',2' '-terpyridine (bp) acceptor and either amino-type donor receptors (R = DMA, A15C5 = monoaza-15-crown-5) or nonbinding substituents (R = CF(3), H, OMe) is investigated employing the representative metal ions Na(I), Ca(II), Zn(II), Hg(II), and Cu(II) and steady-state and time-resolved fluorometry. The bpb-R molecules, the spectroscopic behavior and protonation behavior of which have been detailed in part 1 of this series, present rare examples for CT-operated bifunctional fluorescent probes that can undergo consecutive and/or simultaneous analyte recognition. The analyte-mediated change of the probes' intramolecular CT processes yields complexation site- and analyte-specific outputs, i.e., absorption and fluorescence modulations in energy, intensity, and lifetime. As revealed by the photophysical studies of the cation complexes of these fluoroionophores and the comparison to other neutral and charged D-A biphenyls, the spectroscopic properties of the acceptor chelates of bpb-R and A- and D-coordinated bpb-R are governed by CT control of an excited-state barrier toward formation of a forbidden charge transfer state, by the switching between analytically favorable anti-energy and common energy gap law type behavior, and by the electronic nature of the ligated metal ion. This accounts for the astonishingly high fluorescence quantum yields of the acceptor chelates of bpb-R equipped with weak or medium-sized donors and the red emission of D- and A-coordinated bpb-R observed for nonquenching metal ions.  相似文献   

19.
A new biomimetic model for the heterodinuclear heme/copper center of respiratory oxidases is described. It is derived from iron(III) protoporphyrin IX by covalent attachment of a Gly-L-His-OMe residue to one propionic acid substituent and an amino-bis(benzimidazole) residue to the other propionic acid substituent of the porphyrin ring, yielding the Fe(III) complex 1, and subsequent addition of a copper(II) or copper(I) ion, according to needs. The fully oxidized Fe(III)/Cu(II) complex, 2, binds azide more strongly than 1, and likely contains azide bound as a bridging ligand between Fe(III) and Cu(II). The two metal centers also cooperate in the reaction with hydrogen peroxide, as the peroxide adducts obtained at low temperature for 1 and 2 display different optical features. Support to this interpretation comes from the investigation of the peroxidase activity of the complexes, where the activation of hydrogen peroxide has been studied through the phenol coupling reaction of p-cresol. Here the presence of Cu(II) improves the catalytic performance of complex 2 with respect to 1 at acidic pH, where the positive charge of the Cu(II) ion is useful to promote O-O bond cleavage of the iron-bound hydroperoxide, but it depresses the activity at basic pH because it can stabilize an intramolecular hydroxo bridge between Fe(III) and Cu(II). The reactivity to dioxygen of the reduced complexes has been studied at low temperature starting from the carbonyl adducts of the Fe(II) complex, 3, and Fe(II)/Cu(I) complex, 4. Also in this case the adducts derived from the Fe(II) and Fe(II)/Cu(I) complexes, that we formulate as Fe(III)-superoxo and Fe(III)/Cu(II)-peroxo exhibit slightly different spectral properties, showing that the copper center participates in a weak interaction with the dioxygen moiety.  相似文献   

20.
A series of four bifunctional ligands based on β-diketonate moieties bearing methyl (2), chloro (3), bromo (4) and iodo (5) substituents and their corresponding Cu(II) complexes have been synthesized and crystallographically characterized in order to explore the possibility of using halogen bonds for the directed assembly of predictable architectures in coordination chemistry. The four ligands have characteristic O-H···O intramolecular hydrogen bonds and the structure of ligand 2 is close packed whereas, ligands 3, 4 and 5 contain extended 1-D architectures based on C=O···X halogen bonds. In each case, the halogen-bond donor seeks out the most powerful halogen-bond acceptor (based on electrostatic considerations). In the corresponding Cu(II) complexes the coordination chemistry remains a constant throughout the series, the four-coordinate metal ion sits in a slightly distorted square-planar arrangement, and there are no unexpected appearances of coordinated or non-coordinated solvent molecules. Furthermore, the most powerful halogen-bond acceptors have been almost depleted of charge as a result of metal chelation and none of the potential halogen-bond interactions are capable of competing with the head-to-head close packing that is observed in the methyl, chloro, and bromo, substituted Cu(II) complexes. The enhanced polarizability of the iodine atom, produces a more electropositive surface which means that this structure cannot accommodate a linear head-to-head arrangement due to electrostatic repulsion, and thus [Cu(5)(2)] adopts a unique close-packed structure very different from the other three iso-structural complexes, [Cu(2)(2)]-[Cu(4)(2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号