首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
Considerable interest attaches to the study of a jet of viscous liquid in a field of body forces that depend on an axial coordinate. Such flows are realized when slag cotton is obtained by the action on a molten mineral of the centrifugal force of drums rotating in the vertical plane [1]. The behavior of a film of liquid on a rotating cylinder was considered in [2, 3]. The instability of a molten layer and jet separation are explained on the basis of the Taylor mechanism in [4]. In the present paper, a particular solution is given for accelerating nonisothermal jets of a viscous incompressible liquid. This solution is used to explain the dynamics of jet separation from a uniformly rotating drum. The flow stability is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 27–36, September–October, 1980.We thank A. A. Zaitsev for discussing the results of the work.  相似文献   

2.
The article discusses the three-dimensional problem of unsteady-state waves arising on a free surface and at the interface between two liquids of different densities, with motion of the source. Analogous problems for steady-state waves in a two-layer liquid have been investigated in [1–6], and for unsteady-state waves in a homogeneous liquid in [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–146, July–August, 1970.  相似文献   

3.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

4.
It is well known that, in a layer of an ideal incompressible liquid, only surface gravitational waves can exist [1, 2]. If the liquid is rotating, the existence of inertial waves then becomes possible. There have recently appeared a number of communications devoted to the theoretical [3–7] and experimental [8] study of inertial waves. The present article, in the linear statement, discusses the problem of not-fully-established motions, arising in a rotating layer of a homogeneous incompressible liquid under the action of atmospheric pressure applied to the free surface. It is shown that surface and inertial waves arise, and that a geostrophic flow is formed. Asymptotic formulas are written and analyzed for surface and inertial waves. For actual cases of the assignment of the atmospheric pressure, the geostrophic flow is calculated exactly.  相似文献   

5.
This study investigates the plane linear problem of steady-state internal waves in an ideal incompressible liquid with nonuniform density. The waves are generated by surface pressures applied in a bounded region which moves at constant velocity. It is assumed that the density in the unperturbed state varies continuously with depth, remaining constant in the upper and lower layers and varying according to an exponential law in the middle layer. The problem may be regarded, in particular, as a hydrodynamic model for the study of internal waves produced by a cyclone moving over the surface of the ocean. Analogous investigations for a homogeneous liquid were carried out in [1–3]; internal waves for a liquid with the above-mentioned law of density variation but with stationary pressure changes which are periodic with respect to time were studied in [4]. Problems analogous to the one considered here, both for exponential variation of density in the entire layer and for the case of a nonuniform layer near the surface, were investigated in [5, 6]. An analysis of non-linear waves of the steady-state type with arbitrary distribution of vorticity and density with respect to depth was carried out in [7, 8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 55–62, November–December, 1973.  相似文献   

6.
A theoretical investigation is made of the development of linear two-dimensional waves in a continuously stratified flow of an ideal incompressible fluid. The waves are generated by pressures that are independent of time and that are applied at time t=0 to a bounded region on the free surface of an initially undisturbed flow. The stationary internal waves generated by such a disturbance have been investigated in [1–3]. The nonstationary waves in a continuously stratified fluid that are generated by initial disturbances or periodic surface pressures applied to the entire free surface have been studied in [4–7] in the absence of a slow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 87–93, November–December, 1976.  相似文献   

7.
Three-dimensional, unestablished, gravitationally warped waves arising due to the motion of a harmonically time-varying pressure zone over a solid, thin plate floating on the surface of a homogeneous liquid of finite depth have been studied in the linear formulation. In the absence of a plate, three-dimensional waves are generated by the movement of a region of periodic perturbations, where established waves have been studied in [1, 2], and unestablished waves have been investigated in [3–5]. The evolution of three-dimensional, gravitationally warped waves formed during the motion of a constant load over a plate has been considered in [6].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 54–60, September–October, 1986.  相似文献   

8.
In the linear formulation, an investigation is made into the development of undamped (in time) plane waves generated by a. harmonically varying pressure applied to the free surface of an initially undisturbed flow of a continuously stratified fluid of finite depth. The cases of a homogeneous fluid and two-layer fluid are considered in [1–3]. Nonstationary waves in a continuously stratified flow generated by a time-independent pressure were investigated in [4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 99–104, July–August, 1980.  相似文献   

9.
Composite waves on the surface of the stationary flow of a heavy ideal incompressible liquid are steady forced waves of finite amplitude which do not disappear when the pressure on the free surface becomes constant but rather are transformed into free nonlinear waves [1]. It will be shown that such waves correspond to the case of nonlinear resonance, and mathematically to the bifurcation of the solution of the fundamental integral equation describing these waves. In [2], a study is made of the problem of composite waves in a flow of finite depth generated by a variable pressure with periodic distribution along the surface of the flow. In [3], such waves are considered for a flow with a wavy bottom. In this case, composite waves are defined as steady forced waves of finite amplitude that, when the pressure becomes constant and the bottom is straightened, do not disappear but are transformed into free nonlinear waves over a flat horizontal bottom. However, an existence and uniqueness theorem was not proved for this case. The aim of the present paper is to fill this gap and investigate the conditions under which such waves can arise.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 88–98, July–August, 1980.  相似文献   

10.
A. V. Nesterov 《Fluid Dynamics》1984,19(6):1009-1011
A study is made of the oscillations of the free surface of a cylindrical layer of viscous incompressible fluid attracted by gravity to a solid, uniformly rotating cylinder. Logarithmic decay rates are found for the damping of the surface gravitational waves when large Reynolds numbers are assumed. It is shown that rotation introduces an asymmetry into the damping of the waves traveling in and against the direction of rotation of the fluid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6. pp. 171–173, November–December, 1984.  相似文献   

11.
The problem of the motion of an ideal liquid with a free surface in a cavity within a rigid body has been most fully studied in the linear formulation [1, 2]. In the nonlinear formulation, the problem has been solved by the small-parameter method [3] and numerically [4–7]. However, the limitations inherent in these methods make it impossible to take into account simultaneously the large magnitude and the threedimensional nature of the displacements of the liquid in the moving cavity. In the present paper, a numerical method is proposed for calculating such liquid motions. The results of numerical calculations for spherical and cylindrical cavities are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 174–177, March–April, 1984.  相似文献   

12.
In the linear Rayleigh theory [1] the degree of stability of a jet is determined by the viscosity and inertia characteristics of the fluids and the interphase surface tension. The stability of a jet in an infinite medium increases with increase in the viscosity of both the jet and the medium [2, 3]. The presence of two interfaces is responsible for various features of the development of instability in a liquid layer on the surface of a cylinder, and in particular a layer on the inner surface of a cylinder is more unstable than one on the outer surface [4]. In [5, 6] the breakup of a hollow jet in an external medium was investigated. In this paper we examine, in the linear approximation, the stability of a compound jet of nonmiscible liquids with respect to small axisynmetric perturbations of the interfaces. The instability characteristics are given for jets with inviscid and very viscous outer shells. The conditions governing the suppression of rapidly growing instabilities of the inner part (core) of the jet by a viscous shell are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 3–8, July–August, 1985.  相似文献   

13.
The effect of a rigid bottom of periodic form on small periodic oscillations of the free surface of a liquid is considered with the assumption of low amplitude roughness. The methodologically most significant study in this direction, [1], will be utilized. In [1] the steady-state problem for flow over an arbitrarily rough bottom was studied. Other studies have recently appeared on small free oscillations above a rough bottom. Essentially these have considered the effect of underwater obstacles and cavities on surface waves in the shallow-water approximation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary depth slowly varying with length were considered in [4]. However, these results cannot be applied to the study of resonant interaction of gravitational waves with a periodically curved bottom.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 43–48, July–August, 1984.  相似文献   

14.
The calculation of the motion of separated moisture in a linear horizontal separator is made on the basis of the analysis of the development of the waves in a flow of a thin layer of liquid along a vertical surface without allowance for the transverse flow of mass [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 174–176, March–April, 1985.  相似文献   

15.
The oscillations of a rigid body having a cavity partially filled with an ideal fluid have been studied in numerous reports, for example, [1–6]. Certain analogous problems in the case of a viscous fluid for particular shapes of the cavity were considered in [6, 7]. The general equations of motion of a rigid body having a cavity partially filled with a viscous liquid were derived in [8]. These equations were obtained for a cavity of arbitrary form under the following assumptions: 1) the body and the liquid perform small oscillations (linear approximation applicable); 2) the Reynolds number is large (viscosity is small). In the case of an ideal liquid the equations of [8] become the previously known equations of [2–6]. In the present paper, on the basis of the equations of [8], we study the free and the forced oscillations of a body with a cavity (vessel) which is partially filled with a viscous liquid. For simplicity we consider translational oscillations of a body with a liquid, since even in this case the characteristic mechanical properties of the system resulting from the viscosity of the liquid and the presence of a free surface manifest themselves.The solutions are obtained for a cavity of arbitrary shape. We then consider some specific cavity shapes.  相似文献   

16.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

17.
A study is made of the nonlinear problem of the flow without separation of a perfect weightless liquid past a plate near the free surface. This problem was first posed by Gurevich [1]. At present, there are only a general solution to the problem [2–4] and some numerical calculations [5], which have been made under definite restrictions and are inadequate for detailed information about the interaction between the free surface and the plate. In the present paper, a complete investigation of the problem is given. Convenient computational formulas are obtained together with asymptotic expansions of them, and detailed calculations are made for all depths of the plate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 158–162, January–February, 1980.  相似文献   

18.
A general approach to the investigation of linear internal and surface waves in a stably stratified fluid, arising from different types of perturbations, is presented in [1]. The methods of calculation of the internal waves generated by the motion of a mass source are developed for particular cases of steady horizontal motion in a continuously stratified fluid in [2] and arbitrary motion in an unbounded exponentially stratified fluid in [3]. Internal waves generated by other types of perturbations have also been investigated but only for particular cases of motion (see, for example, [4]). This paper presents a method for the calculation of unsteady, linear, internal gravity waves arising in an inviscid incompressible fluid with continuous stable stratification.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 122–130, July–August, 1985.  相似文献   

19.
The theory of radiation and propagation of sound waves in an ideal medium from a cylindrical surface has been presented in detail in [1–4]. The theory of radiation of a cylinder in a viscous medium is considered in the present paper.  相似文献   

20.
When a liquid is perturbed, its free surface may experience highly non‐linear motions in response. This paper presents a numerical model of the three‐dimensional hydrodynamics of an inviscid liquid with a free surface. The mathematical model is based on potential theory in cylindrical co‐ordinates with a σ‐transformation applied between the bed and free surface in the vertical direction. Chebyshev spectral elements discretize space in the vertical and radial directions; Fourier spectral elements are used in the angular direction. Higher derivatives are approximated using a collocation (or pseudo‐spectral) matrix method. The numerical scheme is validated for non‐linear transient sloshing waves in a cylindrical tank containing a circular surface‐piercing cylinder at its centre. Excellent agreement is obtained with Ma and Wu's [Second order transient waves around a vertical cylinder in a tank. Journal of Hydrodynamics 1995; Ser. B4 : 72–81] second‐order potential theory. Further evidence for the capability of the scheme to predict complicated three‐dimensional, and highly non‐linear, free surface motions is given by the evolution of an impulse wave in a cylindrical tank and in an open domain. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号