首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of mass, momentum, and energy transfer equations under highly non-equilibrium conditions is considered when the traditional assumption of nonequilibrium thermodynamics (the local equilibrium condition) is violated. The derived transfer equations based on particle mass, momentum, and the law of energy conservation are related to heterogeneous systems with arbitrary density, i.e., for three aggregate states and their interfaces. Fluxes of the mentioned properties are described at the atomic-molecular level by nonequilibrium discrete unary and binary distribution functions (in the lattice gas model) with regard to interparticle potential interactions of system components. It is found that the total set of local transfer equations consists of five modified mass, momentum, and energy transfer equations for each of the system sites, and of 15 new equations describing the correlated characteristics of the density, rate, and temperature for the sites of a pair. The relationship between the derived equations and previous theories is discussed.  相似文献   

2.
3.
We have calculated the self-consistent Green's function for a number of atoms and diatomic molecules. This Green's function is obtained from a conserving self-energy approximation, which implies that the observables calculated from the Green's functions agree with the macroscopic conservation laws for particle number, momentum, and energy. As a further consequence, the kinetic and potential energies agree with the virial theorem, and the many possible methods for calculating the total energy all give the same result. In these calculations we use the finite temperature formalism and calculate the Green's function on the imaginary time axis. This allows for a simple extension to nonequilibrium systems. We have compared the energies from self-consistent Green's functions to those of nonselfconsistent schemes and also calculated ionization potentials from the Green's functions by using the extended Koopmans' theorem.  相似文献   

4.
The formulation of path-integral centroid dynamics is extended to the quantum dynamics of density operators evolving from general initial states by means of the nonequilibrium projection operator technique. It is shown that the new formulation provides a basis for applying the method of centroid dynamics to nonequilibrium situations and that it allows the derivation of new formal relations, which can be useful in improving current equilibrium centroid dynamics methods. A simple approximation of uniform relaxation for the unprojected portion of the Liouville space propagator leads to a class of practically solvable equations of motion for the centroid variables, but with an undetermined parameter of relaxation. This new class of equations encompasses the centroid molecular-dynamics (CMD) method as a limiting case, and can be applied to both equilibrium and nonequilibrium situations. Tests for the equilibrium dynamics of one-dimensional model systems demonstrate that the new equations with appropriate choice of the relaxation parameter are comparable to the CMD method.  相似文献   

5.
6.
A generalization of the Gibbs entropy postulate is proposed based on the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy of equations as the nonequilibrium entropy for a system of N interacting particles. This entropy satisfies the basic principles of thermodynamics in the sense that it reaches its maximum at equilibrium and is coherent with the second law. By using a generalization of the Liouville equation describing the evolution of the distribution vector, it is demonstrated that the entropy production is a non-negative quantity. Moreover, following the procedure of nonequilibrium thermodynamics a transport matrix is introduced and a microscopic expression for this is derived. This framework allows one to perform the thermodynamic analysis of nonequilibrium steady states with smooth phase-space distribution functions which, as proven here, constitute the states of minimum entropy production when one considers small departures from stationarity.  相似文献   

7.
In multiphase systems the transfer of mass, heat, and momentum, both along and across phase interfaces, has an important impact on the overall dynamics of the system. Familiar examples are the effects of surface diffusion on foam drainage (Marangoni effect), or the effect of surface elasticities on the deformation of vesicles or red blood cells in an arterial flow. In this paper we will review recent work on modeling transfer processes associated with interfaces in the context of nonequilibrium thermodynamics (NET). The focus will be on NET frameworks employing the Gibbs dividing surface model, in which the interface is modeled as a two-dimensional plane. This plane has excess variables associated with it, such as a surface mass density, a surface momentum density, a surface energy density, and a surface entropy density. We will review a number of NET frameworks which can be used to derive balance equations and constitutive models for the time rate of change of these excess variables, as a result of in-plane (tangential) transfer processes, and exchange with the adjoining bulk phases. These balance equations must be solved together with mass, momentum, and energy balances for the bulk phases, and a set of boundary conditions coupling the set of bulk and interface equations. This entire set of equations constitutes a comprehensive continuum model for a multiphase system, and allows us to examine the role of the interfacial dynamics on the overall dynamics of the system. With respect to the constitutive equations we will focus primarily on equations for the surface extra stress tensor.  相似文献   

8.
The hysteresis dimer reaction of the first sequel is applied to test the Gibbs density-in-phase hypothesis for a canonical distribution at equilibrium. The probability distribution of variously defined internal and external variables is probed using the algorithms described, in particular the novel probing of the energy states of a labeled particle where it is found that there is compliance with the Gibbs’ hypothesis for the stated equilibrium condition and where the probability data strongly suggests that an extended equipartition principle may be formulated for some specific molecular coordinates, whose equipartition temperature does not equal the mean system temperature and a conjecture concerning which coordinates may be suitable is provided. Evidence of violations to the mesoscopic nonequilibrium thermodynamics (MNET) assumptions used without clear qualifications for a canonical distribution for internal variables are described, and possible reasons outlined, where it is found that the free dimer and atom particle kinetic energy distributions agree fully with Maxwell–Boltzmann statistics but the distribution for the relative kinetic energy of bonded atoms does not. The principle of local equilibrium (PLE) commonly used in nonequilibrium theories to model irreversible systems is investigated through NEMD simulation at extreme conditions of bond formation and breakup at the reservoir ends in the presence of a temperature gradient, where for this study a simple and novel difference equation algorithm to test the divergence theorem for mass conservation is utilized, where mass is found to be conserved from the algorithm in the presence of flux currents, in contradiction to at least one aspect of PLE in the linear domain. It is concluded therefore that this principle can be a good approximation at best, corroborating previous purely theoretical results derived from the generalized Clausius Inequality, which proved that the PLE cannot be an exact principle for nonequilibrium systems.   相似文献   

9.
10.
Generalized hydrodynamic moment hierarchies are derived which explicitly include nonequilibrium two-particle and higher-order correlations. The approach is adapted to strongly correlated media and nonequilibrium processes on short time scales which necessitate an explicit treatment of time-evolving correlations. Closure conditions for the extended moment hierarchies are formulated by a maximum-entropy approach, generalizing related closure procedures for kinetic equations. A self-consistent set of nonperturbative dynamical equations are thus obtained for a chosen set of single-particle and two-particle (and possibly higher-order) moments. Analytical results are derived for generalized Gaussian closures including the dynamic pair distribution function and a two-particle correction to the current density. The maximum-entropy closure conditions are found to involve the Kirkwood superposition approximation.  相似文献   

11.
Equilibrium and nonequilibrium molecular dynamics (MD) simulations have been performed in both isochoric-isothermal (NVT) and isobaric-isothermal (NPT) ensemble systems. Under steady state shearing conditions, thermodynamic states and rheological properties of liquid n-hexadecane molecules have been studied. Between equilibrium and nonequilibrium states, it is important to understand how shear rates (gamma) affect the thermodynamic state variables of temperature, pressure, and density. At lower shear rates of gamma<1 x 10(11) s(-1), the relationships between the thermodynamic variables at nonequilibrium states closely approximate those at equilibrium states, namely, the liquid is very near its Newtonian fluid regime. Conversely, at extreme shear rates of gamma>1 x 10(11) s(-1), specific behavior of shear dilatancy is observed in the variations of nonequilibrium thermodynamic states. Significantly, by analyzing the effects of changes in temperature, pressure, and density on shear flow system, we report a variety of rheological properties including the shear thinning relationship between viscosity and shear rate, zero-shear-rate viscosity, rotational relaxation time, and critical shear rate. In addition, the flow activation energy and the pressure-viscosity coefficient determined through Arrhenius and Barus equations acceptably agree with the related experimental and MD simulation results.  相似文献   

12.
13.
14.
The second entropy theory for nonequilibrium thermodynamics is extended to the nonlinear regime and to systems of mixed parity (even and odd functions of molecular velocities). The steady state phase space probability density is given for systems of mixed parity. The nonlinear transport matrix is obtained and it is shown to yield the analog of the linear Onsager-Casimir reciprocal relations. Its asymmetric part contributes to the flux and to the production of second entropy. The nonlinear transport matrix is not simply expressible as a Green-Kubo fluctuation equilibrium time correlation function. However, here the first nonlinear correction to the transport coefficient is given explicitly as a type of the Green-Kubo equilibrium time correlation function. The theory is illustrated by application to chemical kinetics.  相似文献   

15.
16.
In order to adequately describe molecular rotation far from equilibrium, we have generalized the J-diffusion model by allowing the rotational relaxation rate to be angular momentum dependent. The calculated nonequilibrium rotational correlation functions (CFs) are shown to decay much slower than their equilibrium counterparts, and orientational CFs of hot molecules exhibit coherent behavior, which persists for several rotational periods. As distinct from the results of standard theories, rotational and orientational CFs are found to dependent strongly on the nonequilibrium preparation of the molecular ensemble. We predict the Arrhenius energy dependence of rotational relaxation times and violation of the Hubbard relations for orientational relaxation times. The standard and generalized J-diffusion models are shown to be almost indistinguishable under equilibrium conditions. Far from equilibrium, their predictions may differ dramatically.  相似文献   

17.
The phase space probability density for steady heat flow is given. This generalizes the Boltzmann distribution to a nonequilibrium system. The expression includes the nonequilibrium partition function, which is a generating function for statistical averages and which can be related to a nonequilibrium free energy. The probability density is shown to give the Green-Kubo formula in the linear regime. A Monte Carlo algorithm is developed based upon a Metropolis sampling of the probability distribution using an umbrella weight. The nonequilibrium simulation scheme is shown to be much more efficient for the thermal conductivity of a Lennard-Jones fluid than the Green-Kubo equilibrium fluctuation method. The theory for heat flow is generalized to give the generic nonequilibrium probability densities for hydrodynamic transport, for time-dependent mechanical work, and for nonequilibrium quantum statistical mechanics.  相似文献   

18.
A numerical model has been developed to analyze arc-anode attachment in direct-current electric arcs. The developed model fully couples a plasma flow with electromagnetic fields in a self-consistent manner. Electrons and heavy species are assumed to have different temperatures. Species continuities are taken into account to address the chemical nonequilibrium with the Self-Consistent Effective Binary Diffusion (SCEBD) formulation. Electric and magnetic field equations are determined with a newly developed Ohm’s law, an improvement over the conventional generalized Ohm’s law. The governing equations are discretized and solved using the Finite Volume Method (FVM) and Gauss–Seidel Line Relaxation (GSLR) method in a two-dimensional domain. The model is applied to a two-dimensional axisymmetric high-intensity argon arc. The results are compared favorably with experimental and other numerical data. A significant electric potential drop has been observed in the vicinity of the anode due to the thermal and chemical nonequilibrium effects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号