首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Listeners have a remarkable ability to localize and identify sound sources in reverberant environments. The term "precedence effect" (PE; also known as the "Haas effect," "law of the first wavefront," and "echo suppression") refers to a group of auditory phenomena that is thought to be related to this ability. Traditionally, three measures have been used to quantify the PE: (1) Fusion: at short delays (1-5 ms for clicks) the lead and lag perceptually fuse into one auditory event; (2) Localization dominance: the perceived location of the leading source dominates that of the lagging source; and (3) Discrimination suppression: at short delays, changes in the location or interaural parameters of the lag are difficult to discriminate compared with changes in characteristics of the lead. Little is known about the relation among these aspects of the PE, since they are rarely studied in the same listeners. In the present study, extensive measurements of these phenomena were made for six normal-hearing listeners using 1-ms noise bursts. The results suggest that, for clicks, fusion lasts 1-5 ms; by 5 ms most listeners hear two sounds on a majority of trials. However, localization dominance and discrimination suppression remain potent for delays of 10 ms or longer. Results are consistent with a simple model in which information from the lead and lag interacts perceptually and in which the strength of this interaction decreases with spatiotemporal separation of the lead and lag. At short delays, lead and lag both contribute to spatial perception, but the lead dominates (to the extent that only one position is ever heard). At the longest delays tested, two distinct sounds are perceived (as measured in a fusion task), but they are not always heard at independent spatial locations (as measured in a localization dominance task). These results suggest that directional cues from the lag are not necessarily salient for all conditions in which the lag is subjectively heard as a separate event.  相似文献   

2.
Temporal processing declines with age may reduce the processing of concurrent vowels. For this study, listeners categorized vowel pairs varying in temporal asynchrony as one sound, two overlapping sounds, or two sounds separated by a gap. Two boundaries separating the three response categories, multiplicity and gap-identification, were measured. Compared to young and middle-aged listeners, older listeners required longer temporal offsets for multiplicity. Middle-aged and older listeners also required longer offsets for gap-identification. For older listeners, correlations with various temporal processing tasks indicated that vowel temporal-order thresholds were related to multiplicity, while age and non-speech gap-detection thresholds were related to gap-identification.  相似文献   

3.
The present study had two main purposes. One was to examine if listeners perceive gradually increasing durations of a voiceless fricative categorically ("fluent" versus "stuttered") or continuously (gradient perception from fluent to stuttered). The second purpose was to investigate whether there are gender differences in how listeners perceive various duration of sounds as "prolongations." Forty-four listeners were instructed to rate the duration of the // in the word "shape" produced by a normally fluent speaker. The target word was embedded in the middle of an experimental phrase and the initial // sound was digitally manipulated to create a range of fluent to stuttered sounds. This was accomplished by creating 20 ms stepwise increments for sounds ranging from 120 to 500 ms in duration. Listeners were instructed to give a rating of 1 for a fluent word and a rating of 100 for a stuttered word. The results showed listeners perceived the range of sounds continuously. Also, there was a significant gender difference in that males rated fluent sounds higher than females but female listeners rated stuttered sounds higher than males. The implications of these results are discussed.  相似文献   

4.
To clarify the role of spatial cues in sound segregation, this study explored whether interaural time differences (ITDs) are sufficient to allow listeners to identify a novel sound source from a mixture of sources. Listeners heard mixtures of two synthetic sounds, a target and distractor, each of which possessed naturalistic spectrotemporal correlations but otherwise lacked strong grouping cues, and which contained either the same or different ITDs. When the task was to judge whether a probe sound matched a source in the preceding mixture, performance improved greatly when the same target was presented repeatedly across distinct distractors, consistent with previous results. In contrast, performance improved only slightly with ITD separation of target and distractor, even when spectrotemporal overlap between target and distractor was reduced. However, when subjects localized, rather than identified, the sources in the mixture, sources with different ITDs were reported as two sources at distinct and accurately identified locations. ITDs alone thus enable listeners to perceptually segregate mixtures of sources, but the perceived content of these sources is inaccurate when other segregation cues, such as harmonicity and common onsets and offsets, do not also promote proper source separation.  相似文献   

5.
The cortical mechanisms of perceptual segregation of concurrent sound sources were examined, based on binaural detection of interaural timing differences. Auditory event-related potentials were measured from 11 healthy subjects. Binaural stimuli were created by introducing a dichotic delay of 500-ms duration to a narrow frequency region within a broadband noise, and resulted in a perception of a centrally located noise and a right-lateralized pitch (dichotic pitch). In separate listening conditions, subjects actively discriminated and responded to randomly interleaved binaural and control stimuli, or ignored random stimuli while watching silent cartoons. In a third listening condition subjects ignored stimuli presented in homogenous blocks. For all listening conditions, the dichotic pitch stimulus elicited an object-related negativity (ORN) at a latency of about 150-250 ms after stimulus onset. When subjects were required to actively respond to stimuli, the ORN was followed by a P400 wave with a latency of about 320-420 ms. These results support and extend a two-stage model of auditory scene analysis in which acoustic streams are automatically parsed into component sound sources based on source-relevant cues, followed by a controlled process involving identification and generation of a behavioral response.  相似文献   

6.
Whenever an acoustic scene contains a mixture of sources, listeners must segregate the mixture in order to compute source content and/or location. Some past studies have explored whether perceived location depends on which sound elements are perceived within a source. However, no direct comparisons have been made of "what" and "where" judgments for the same sound mixtures using the same listeners. The current study tested if the sound elements making up an auditory object predict that object's perceived location. Listeners were presented with an auditory scene containing competing "target" and "captor" sources, each of which could logically contain a "promiscuous" tone complex. In separate blocks, the same listeners matched the perceived spectro-temporal content ("what") and location ("where") of the target. Generally, as the captor intensity decreased, the promiscuous complex contributed more to both what and where judgments of the target. However judgments did not agree either quantitatively or qualitatively. For some subjects, the promiscuous complex consistently contributed more to the spectro-temporal content of the target than to its location while for some it consistently contributed more to target location. These results show a dissociation between the perceived spectro-temporal content of an auditory object and where that object is perceived.  相似文献   

7.
The neural processes underlying concurrent sound segregation were examined by using event-related brain potentials. Participants were presented with complex sounds comprised of multiple harmonics, one of which could be mistuned so that it was no longer an integer multiple of the fundamental. In separate blocks of trials, short-, middle-, and long-duration sounds were presented and participants indicated whether they heard one sound (i.e., buzz) or two sounds (i.e., buzz plus another sound with a pure-tone quality). The auditory stimuli were also presented while participants watched a silent movie in order to evaluate the extent to which the mistuned harmonic could be automatically detected. The perception of the mistuned harmonic as a separate sound was associated with a biphasic negative-positive potential that peaked at about 150 and 350 ms after sound onset, respectively. Long duration sounds also elicited a sustained potential that was greater in amplitude when the mistuned harmonic was perceptually segregated from the complex sound. The early negative wave, referred to as the object-related negativity (ORN), was present during both active and passive listening, whereas the positive wave and the mistuning-related changes in sustained potentials were present only when participants attended to the stimuli. These results are consistent with a two-stage model of auditory scene analysis in which the acoustic wave is automatically decomposed into perceptual groups that can be identified by higher executive functions. The ORN and the positive waves were little affected by sound duration, indicating that concurrent sound segregation depends on transient neural responses elicited by the discrepancy between the mistuned harmonic and the harmonic frequency expected based on the fundamental frequency of the incoming stimulus.  相似文献   

8.
The precedence effect refers to the fact that humans are able to localize sound in reverberant environments, because the auditory system assigns greater weight to the direct sound (lead) than the later-arriving sound (lag). In this study, absolute sound localization was studied for single source stimuli and for dual source lead-lag stimuli in 4-5 year old children and adults. Lead-lag delays ranged from 5-100 ms. Testing was conducted in free field, with pink noise bursts emitted from loudspeakers positioned on a horizontal arc in the frontal field. Listeners indicated how many sounds were heard and the perceived location of the first- and second-heard sounds. Results suggest that at short delays (up to 10 ms), the lead dominates sound localization strongly at both ages, and localization errors are similar to those with single-source stimuli. At longer delays errors can be large, stemming from over-integration of the lead and lag, interchanging of perceived locations of the first-heard and second-heard sounds due to temporal order confusion, and dominance of the lead over the lag. The errors are greater for children than adults. Results are discussed in the context of maturation of auditory and non-auditory factors.  相似文献   

9.
The effect of spatial separation on the ability of human listeners to resolve a pair of concurrent broadband sounds was examined. Stimuli were presented in a virtual auditory environment using individualized outer ear filter functions. Subjects were presented with two simultaneous noise bursts that were either spatially coincident or separated (horizontally or vertically), and responded as to whether they perceived one or two source locations. Testing was carried out at five reference locations on the audiovisual horizon (0 degrees, 22.5 degrees, 45 degrees, 67.5 degrees, and 90 degrees azimuth). Results from experiment 1 showed that at more lateral locations, a larger horizontal separation was required for the perception of two sounds. The reverse was true for vertical separation. Furthermore, it was observed that subjects were unable to separate stimulus pairs if they delivered the same interaural differences in time (ITD) and level (ILD). These findings suggested that the auditory system exploited differences in one or both of the binaural cues to resolve the sources, and could not use monaural spectral cues effectively for the task. In experiments 2 and 3, separation of concurrent noise sources was examined upon removal of low-frequency content (and ITDs), onset/offset ITDs, both of these in conjunction, and all ITD information. While onset and offset ITDs did not appear to play a major role, differences in ongoing ITDs were robust cues for separation under these conditions, including those in the envelopes of high-frequency channels.  相似文献   

10.
The Franssen Effect (FE) is a striking auditory illusion previously demonstrated only in humans. To elicit the FE, subjects are presented with two spatially-separated sounds; one a transient tone with an abrupt onset and immediate ramped offset and the other a sustained tone of the same frequency with a ramped onset which remains on for several hundred ms. The FE illusion occurs when listeners localize the tones at the location of the transient signal, even though that sound has ended and the sustained one is still present. The FE illusion occurs most readily in reverberant environments and with pure tones of approximately 1-2.5 kHz in humans, conditions where sound localization is difficult in humans. Here, we demonstrate this illusion in domestic cats using, for the first time, localization procedures. Previous studies in humans employed discrimination procedures, making it difficult to link the FE to sound localization mechanisms. The frequencies for eliciting the FE in cats were higher than in humans, corresponding to frequencies where cats have difficulty localizing pure tones. These findings strengthen the hypothesis that difficulty in accurately localizing sounds is the basis for the FE.  相似文献   

11.
Experiments explored how a distractor coming from a known location influences the localization of a subsequent sound, both in a classroom and in an anechoic chamber. Listeners localized a target click preceded by a distractor click coming from a location fixed throughout a run of trials (either frontal or lateral). The stimulus onset asynchrony (SOA) between distractor and target was relatively long (25-400 ms); control trials presented the target alone. The distractor induced bias and variability in target localization responses even at the longest SOA, with the specific pattern of effects differing between the two rooms. Furthermore, the presence of the distractor caused target responses to be displaced away from the distractor location in that run, even on trials with no distractor. This contextual bias built up anew in each run, over the course of minutes. The different effects illustrate that (a) sound localization is a dynamic process that depends on both the context and on the level of reverberation in the environment, and (b) interactions between sequential sound sources occur on time scales from hundreds of milliseconds to as long as minutes.  相似文献   

12.
Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.  相似文献   

13.
It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m-diam circle around a central listening station. The duration and received level of the narrowband frequency-modulated signals (center frequencies 16, 64 and 100 kHz) were varied. The animal's localization performance increased when the signal duration increased from 600 to 1000 ms. The lower the received sound pressure level (SPL) of the signal, the harder the animal found it to localize the sound source. When pulse duration was long enough (approximately 1 s) and the received SPLs of the sounds were high (34-50 dB above basic hearing thresholds or 3-15 dB above the theoretical masked detection threshold in the ambient noise condition of the present study), the animal could locate sounds of the three frequencies almost equally well. The porpoise was able to locate sound sources up to 124 degrees to its left or right more easily than sounds from behind it.  相似文献   

14.
To determine how listeners weight different portions of the signal when integrating level information, they were presented with 1-s noise samples the levels of which randomly changed every 100 ms by repeatedly, and independently, drawing from a normal distribution. A given stimulus could be derived from one of two such distributions, a decibel apart, and listeners had to classify each sound as belonging to the "soft" or "loud" group. Subsequently, logistic regression analyses were used to determine to what extent each of the ten temporal segments contributed to the overall judgment. In Experiment 1, a nonoptimal weighting strategy was found that emphasized the beginning, and, to a lesser extent, the ending of the sounds. When listeners received trial-by-trial feedback, however, they approached equal weighting of all stimulus components. In Experiment 2, a spectral change was introduced in the middle of the stimulus sequence, changing from low-pass to high-pass noise, and vice versa. The temporal location of the stimulus change was strongly weighted, much as a new onset. These findings are not accounted for by current models of loudness or intensity discrimination, but are consistent with the idea that temporal weighting in loudness judgments is driven by salient events.  相似文献   

15.
Two experiments explored how frequency content impacts sound localization for sounds containing reverberant energy. Virtual sound sources from thirteen lateral angles and four distances were simulated in the frontal horizontal plane using binaural room impulse responses measured in an everyday office. Experiment 1 compared localization judgments for one-octave-wide noise centered at either 750 Hz (low) or 6000 Hz (high). For both band-limited noises, perceived lateral angle varied monotonically with source angle. For frontal sources, perceived locations were similar for low- and high-frequency noise; however, for lateral sources, localization was less accurate for low-frequency noise than for high-frequency noise. With increasing source distance, judgments of both noises became more biased toward the median plane, an effect that was greater for low-frequency noise than for high-frequency noise. In Experiment 2, simultaneous presentation of low- and high-frequency noises yielded performance that was less accurate than that for high-frequency noise, but equal to or better than for low-frequency noise. Results suggest that listeners perceptually weight low-frequency information heavily, even in reverberant conditions where high-frequency stimuli are localized more accurately. These findings show that listeners do not always optimally adjust how localization cues are integrated over frequency in reverberant settings.  相似文献   

16.
The contribution of temporal asynchrony, spatial separation, and frequency separation to the cross-spectral fusion of temporally contiguous brief narrow-band noise bursts was studied using the Rhythmic Masking Release paradigm (RMR). RMR involves the discrimination of one of two possible rhythms, despite perceptual masking of the rhythm by an irregular sequence of sounds identical to the rhythmic bursts, interleaved among them. The release of the rhythm from masking can be induced by causing the fusion of the irregular interfering sounds with concurrent "flanking" sounds situated in different frequency regions. The accuracy and the rated clarity of the identified rhythm in a 2-AFC procedure were employed to estimate the degree of fusion of the interferring sounds with flanking sounds. The results suggest that while synchrony fully fuses short-duration noise bursts across frequency and across space (i.e., across ears and loudspeakers), an asynchrony of 20-40 ms produces no fusion. Intermediate asynchronies of 10-20 ms produce partial fusion, where the presence of other cues is critical for unambiguous grouping. Though frequency and spatial separation reduced fusion, neither of these manipulations was sufficient to abolish it. For the parameters varied in this study, stimulus onset asynchrony was the dominant cue determining fusion, but there were additive effects of the other cues. Temporal synchrony appears to be critical in determining whether brief sounds with abrupt onsets and offsets are heard as one event or more than one.  相似文献   

17.
In humans, directional hearing in reverberant conditions is characterized by a "precedence effect," whereby directional information conveyed by leading sounds dominates perceived location, and listeners are relatively insensitive to directional information conveyed by lagging sounds. Behavioral studies provide evidence of precedence phenomena in a wide range of species. The present study employs a discrimination paradigm, based on habituation and recovery of the pupillary dilation response, to provide quantitative measures of precedence phenomena in the barn owl. As in humans, the owl's ability to discriminate changes in the location of lagging sources is impaired relative to that for single sources. Spatial discrimination of lead sources is also impaired, but to a lesser extent than discrimination of lagging sources. Results of a control experiment indicate that sensitivity to monaural cues cannot account for discrimination of lag source location. Thus, impairment of discrimination ability in the two-source conditions most likely reflects a reduction in sensitivity to binaural directional information. These results demonstrate a similarity of precedence effect phenomena in barn owls and humans, and provide a basis for quantitative comparison with neuronal data from the same species.  相似文献   

18.
Experiments were performed to determine the ability of human listeners to discriminate between a sound with a large number of spectral components in a band, of given characteristic frequency and bandwidth, and a sound with a smaller number of components in that band. A pseudorandom placement of the components within the band ensured that no two sounds were identical. The data suggested that discrimination is primarily based upon the perception of temporal fluctuations in the intensity of the sound and secondarily upon resolved structure in the spectrum, perceived as tone color. Experiments using clusters of complex harmonic sounds showed that listeners are able to use the information in upper harmonic bands to discriminate spectral density.  相似文献   

19.
The ability of human listeners to identify broadband noises differing in spectral structure was studied for multiple sound-source locations in the median sagittal plane. The purpose of the study was to understand how sound identification is affected by spectral variations caused by directionally dependent head-related transfer functions. It was found that listeners could accurately identify noises with different spectral peaks and valleys when the source location was fixed. Listeners could also identify noises when the source location was roved in the median sagittal plane when the relevant spectral features were at low frequency. Listeners failed to identify noises with roved location when the spectral structure was at high frequency, presumably because the spectral structure was confused with the spectral variations caused by different locations. Parallel experiments on sound localization showed that listeners can localize noises that they cannot identify. The combination of identification and localization experiments leads to the conclusion that listeners cannot compensate for directionally dependent filtering by their own heads when they try to identify sounds.  相似文献   

20.
The use of across-frequency timing cues and the effect of disrupting these cues were examined across the frequency spectrum by introducing between-band asynchronies to pairs of narrowband temporal speech patterns. Sentence intelligibility by normal-hearing listeners fell when as little as 12.5 ms of asynchrony was introduced and was reduced to floor values by 100 ms. Disruptions to across-frequency timing had similar effects in the low-, mid-, and high-frequency regions, but band pairs having wider frequency separation were less disrupted by small amounts of asynchrony. In experiment 2, it was found that the disruptive influence of asynchrony on adjacent band pairs did not result from disruptions to the complex patterns present in overlapping excitation. The results of experiment 3 suggest that the processing of speech patterns may take place using mechanisms having different sensitivities to exact timing, similar to the dual mechanisms proposed for within- and across-channel gap detection. Preservation of relative timing can be critical to intelligibility. While the use of across-frequency timing cues appears similar across the spectrum, it may differ based on frequency separation. This difference appears to involve a greater reliance on exact timing during the processing of speech energy at proximate frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号