首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The article reports on the wetting properties of silicon-based materials as a function of their roughness and chemical composition. The investigated surfaces consist of hydrogen-terminated and chemically modified atomically flat crystalline silicon, porous silicon and silicon nanowires. The hydrogenated surfaces are functionalized with 1-octadecene or undecylenic acid under thermal conditions. The changes occurring upon surface functionalization are characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) spectroscopy and water contact angle measurements. By increasing the surface roughness, the static water contact angle increases. The combination of high surface roughness with chemical functionalization with water repellent coating (1-octadecene) enables reaching superhydrophobicity (water contact angle greater than 150°) for silicon nanowires.  相似文献   

2.
近年来,偶氮苯类化合物的光学顺反异构现象已引起人们的广泛关注[1~7].在紫外光照射下,偶氮苯由反式结构转变为顺式结构,引起分子的偶极矩发生变化,导致分子的吸收光谱、尺寸及表面能等均发生变化[7].偶氮苯表面能的改变可引起其表面浸润性发生变化.据文献[1~4]报道,偶氮苯膜在紫外光照射前后接触角最大改变了11°.浸润性是固体表面的一个重要特性,主要受固体表面的化学组成和微观几何结构(粗糙度)影响[8~11].通常,与水的接触角大于150°的表面称为超疏水表面;而与水的接触角小于5°的表面称为超亲水表面.本文以2-(4-偶氮苯基苯氧基)丙烯酸…  相似文献   

3.
A matrix-free, high sensitivity, nanostructured silicon surface assisted laser desorption/ionization mass spectrometry (LDI-MS) method fabricated by metal-assisted etching was investigated. Effects of key process parameters, such as etching time, substrate resistance and etchant composition, on the nanostructured silicon formation and its LDI-MS efficiency were studied. The results show that the nanostructured silicon pore depth and size increase with etching time, while MS ion intensity increases with etching time to 300 s then decreases until 600 s for both low resistance (0.001–0.02 Ω cm) and high resistance (1–100 Ω cm) silicon substrates. The nanostructured silicon surface morphologies were found to directly affect the LDI-MS signal ion intensity. By characterizing the nanostructured silicon surface roughness using atomic force microscopy (AFM) and sample absorption efficiency using fluorescence microscopy, it was further demonstrated that the nanostructured silicon surface roughness was highly correlated to the LDI-MS performance.  相似文献   

4.
Self-assembled monolayers (SAMs) of alkanephosphonic acids with chain lengths between 8 and 18 carbon units were formed on thin films of indium tin oxide (ITO) sputter-deposited on silicon substrates with 400 nm thermally grown SiO(2). The silicon substrates, while not intended for use in near-IR or visible optics applications, do provide smooth surfaces that permit systematic engineering of grain size and surface roughness as a function of the sputter pressure. Argon sputter pressures from 4 to 20 mTorr show systematic changes in surface morphology ranging from smooth, micrometer-sized grain structures to <50 nm grains with 3× higher surface roughness. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments are conducted for alkanephosphonic acids deposited on these wide range of ITO surfaces to evaluate the effects of these morphological features on monolayer ordering. Results indicate that long-chain SAMs are more highly ordered, and have a smaller tilt angle, than short-chain SAMs. Surprisingly, the 1-octadecyl phosphonic acids maintain their order as the lateral grain dimensions of the ITO surface shrink to ~50 nm. It is only when the ITO surface roughness becomes greater than the SAM chain length (~15 ?) that SAMs are observed to become relatively disordered.  相似文献   

5.
Thin films (20-150 nm thickness) of poly(o-anthranilic acid) with various doping levels were prepared on silicon substrates with deposited indium tin oxide, and their topography and current-voltage (I-V) characteristics were quantitatively investigated using current-sensing atomic force microscopy with a platinum-coated tip. The films were found to have a surface morphology like that of orange peel, with a periodic modulation and a surface roughness. The films exhibited nonuniform current flows and I-V characteristics that depended on the doping level as well as on the film thickness. Films with a high doping level were found to exhibit Zener diode switching behavior, whereas the films with a very low doping level (or that were dedoped) exhibited no current flow at all, and so are insulators. Interestingly, self-doped films (which are at an intermediate doping level) were found to have a novel electrical bistability, i.e., a switching characteristic like that of Schottky diodes, and increasingly insulating characteristics as the film thickness was increased. The films with thickness < or =62 nm, which exhibited this novel and stable electrical bistability, can potentially be used in the fabrication of high-density, stable, high-performance digital nonvolatile memory devices based only on transistors. The measured current images and I-V characteristics indicate that the electrical switching and bistability of the films are governed by local filament formation and charge traps.  相似文献   

6.
Considerable effort has been expended on theoretical studies of superhydrophobic surfaces with two-tier (micro and nano) roughness, but experimental studies are few due to the difficulties in fabricating such surfaces in a controllable way. The objective of this work is to experimentally study the wetting and hydrophobicity of water droplets on two-tier rough surfaces for comparison with theoretical analyses. To compare wetting on micropatterned silicon surfaces with wetting on nanoscale roughness surfaces, two model systems are fabricated: carbon nanotube arrays on silicon wafers and carbon nanotube arrays on carbon nanotube films. All surfaces are coated with 20 nm thick fluorocarbon films to obtain low surface energies. The results show that the microstructural characteristics must be optimized to achieve stable superhydrophobicity on microscale rough surfaces. However, the presence of nanoscale roughness allows a much broader range of surface design criteria, decreases the contact angle hysteresis to less than 1 degrees , and establishes stable and robust superhydrophobicity, although nanoscale roughness could not increase the apparent contact angle significantly if the microscale roughness dominates.  相似文献   

7.
We demonstrate a simple method for the fabrication of rough silicon surfaces with micro- and nanostructures, which exhibited superhydrophobic behaviors. Hierarchically rough silicon surfaces were prepared by copper (Cu)-assisted chemical etching process where Cu nanoparticles having particle size of 10-30 nm were deposited on silicon surface, depending on the period of time of electroless Cu plating. Surface roughness was controlled by both the size of Cu nanoparticles and etching conditions. As-synthesized rough silicon surfaces showed water contact angles ranging from 93° to 149°. Moreover, the hierarchically rough silicon surfaces were chemically modified by spin-coating of a thin layer of Teflon precursor with low surface energy. And thus it exhibited nonsticky and enhanced hydrophobic properties with extremely high contact angle of nearly 180°.  相似文献   

8.
The effect of roughness on the dewetting behavior of polyethylene thin films on silicon dioxide substrates is presented. Smooth and rough silicon dioxide substrates of 0.3 and 3.2-3.9 nm root-mean-square roughness were prepared by thermal oxidation of silicon wafers and plasma-enhanced chemical vapor deposition on silicon wafers, respectively. Polymer thin films of approximately 80 nm thickness were deposited by spin-coating on these substrates. Subsequent dewetting and crystallization of the polyethylene were observed by hot-stage optical microscopy in reflection mode. During heating, the polymer films melt and dewet on both substrates. Further observations after cooling indicate that, whereas complete dewetting occurs on the smooth substrate surface, partial dewetting occurs for the polymer film on the rough surface. The average thickness of the residual film on the rough surface was determined by ellipsometry to be a few nanometers, and the spatial distribution of the polymer in the cavities of the rough surface could be obtained by X-ray reflectometry. The residual film originates from the impregnation of the porous surface by the polymer fluid, leading to the observed partial dewetting behavior. This new type of partial dewetting should have important practical consequences, as most real surfaces exhibit significant roughness.  相似文献   

9.
Superhydrophobic surfaces in Wenzel and metastable wetting state were prepared and the conversion of such surfaces to ultraphobic surfaces was reported by the application of a fine-scale roughness. Silicon nitride substrates with hexagonally arranged pillars were prepared by micromachining. The two-scale roughness was achieved by coating these substrates with 60 nm silica nanoparticles. The surface was made hydrophobic by silanization with octadecytrichlorosilane (OTS). Wettability studies of the silicon nitride flat surface, silicon nitride pillars, and the surfaces with two-scale roughness showed that a two-scale roughness can effectively improve the hydrophobicity of surfaces with a higher apparent contact angle and reduced contact angle hysteresis when the original rough surface was in a metastable or Wenzel state. This study shows the pathway of converting a metastable hydrophobic surface to an ultraphobic surface by the introduction of a fine-scale roughness, which adds to the literature a new aspect of fine-scale roughness effect.  相似文献   

10.
The effect of radiofrequency glow-discharge sputtering on the sample surface in terms of modifications in the surface morphology were investigated in this work by using atomic force microscopy (AFM) and rugosimetry measurements. The influence of GD operating parameters (e.g. rf power, discharge pressure and sputtering time) on surface roughening was investigated using two different types of samples: mirror-polished and homogeneous silicon wafers and chromate conversion coatings (CCCs). Surface morphology changes produced by GD sputtering into the sample surface were carefully investigated by AFM and rugosimetry, both at the original sample surface and at the bottom of GD craters using different GD experimental conditions, such as the sputtering time (from 1 s to 20 min), rf forward power (20–60 W for the Si wafer and 10–60 W for the CCC), and discharge pressure (400–1,000 Pa for the Si wafer and 500–1000 Pa for the CCC). In the present study, GD-induced morphology modifications were observed after rf-GD-OES analysis, both for the silicon wafers and the CCC. Additionally, the changes observed in surface roughness after GD sputtering were found to be sample-dependent, changing the proportion, shape and roughness of the micro-sized patterns and holes with the sample matrix and the GD conditions.  相似文献   

11.
Monodispersed silica nanoparticles were prepared by a simple two-step method with hydrolysis and condensation. The materials were characterized by dynamic light scattering (DLS), SEM and TEM. Through in-situ growth of silica nanoparticles on cotton fabrics, a dual-scaled surface with nanoscaled roughness of silica and microscaled roughness of cellulose fiber was generated. After the modification of the low surface energy, the wettability of smooth silicon slide, silicon slide with nanoscaled roughness of silica particles, cotton fabric, and cotton fabric with silica particles was evaluated by the tests of the contact angle (CA) and the advancing and receding contact angle (ARCA). The cotton fabric with dual-scaled roughness exhibits a static CA of 149.8° for 4 μL water droplet and a hysteresis contact angle (HCA) of 1.8°. The results of CA and HCA show that microscaled roughness plays a more important role than nanoscaled roughness for the value of CA and HCA. The results in the hydrostatic pressure test and the rain test show the important contribution of nanoscaled roughness for hydrophobicity.  相似文献   

12.
Atomic force microscopes (AFM) are commonly used to measure adhesion at nanoscale between two surfaces. To avoid uncertainties in the contact areas between the tip and the surface, colloidal probes have been used for adhesion measurements. We measured adhesion between glass spheres and silicon (100) surface using colloidal probes of different radii under controlled conditions (relative humidity of < 3%, temperature of 25 +/- 1 degrees C). Results showed that the adhesion forces did not correlate with the radii of the spheres as suggested by elastic contact mechanics theories. Surface roughness and random surface features were found on the surfaces of the colloidal probes. We evaluated various roughness parameters, Rumpf and Rabinovich models, and a load-bearing area correction model in an attempt to correct for the roughness effects on adhesion, but the results were unsatisfactory. We developed a new multiscale contact model taking into account elastic as well as plastic deformation in a successive contacting mode. The new model was able to correct for most of the surface roughness features except for surface ridges with sharp angular features, limited by the spherical asperity assumption made in the model.  相似文献   

13.
Wet chemical cleaning of silicon is a critical step in the semiconductor manufacturing. Particles, contaminants, metallic impurities, roughness and native oxide on silicon surface after wet chemical cleaning deteriorate the reliability of transistor performance in integrated circuits[1]. Wet chemical etching of Si(111) and Si(100) in fluoride and alkaline solutions has been extensively studied in the past few years by using scanning tunneling microscopy (STM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR)[2-11]. In the present work, we extend our study to Si(111) surface after treating with NH4F/HCl mixtures. STM, X-ray photo spectroscopy (XPS), and ATR-FTIR are used to determine surface roughness, contamination and bond information on Si(111) surface after wet chemical cleaning with various NH4F/HCl mixtures. The results are discussed in details by comparison to those treated with RCA and HF solutions, indicating that ultra-clean and flat Si(111) surface is obtained by treatment with NH4F/HCl mixture.  相似文献   

14.
Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-bromo-2-methylpropionic acid. XPS and FTIR confirmed the chemical structure of the surface initiator and the PNIPAAm brushes. Surface analysis techniques, including ellipsometry, contact angle goniometry, and X-ray reflectometry (XRR), were used to characterize the thickness, roughness, hydrophilicity, and density of the polymer brushes. Tapping-mode AFM imaging confirmed the successful patterning of the PNIPAAm brushes on the oxidized silicon substrates. Variable temperature ellipsometry indicated that the lower critical solution temperature of the hydrated PNIPAAm brush was broad, occurring over the range of 20-35 degrees C. A solvatochromic fluorophore, 6-propionyl-2-dimethylaminonaphthalene (Prodan), in the PNIPAAm brush layers yielded a very similar emission to that in DMF, which can be attributed to the similarity of their chemical structures. Fluorescence microscopy further proved the successful patterning of the polymer brushes and suggested that the Prodan is localized in the patterned PNIPAAm brushes and excluded from the surrounding octadecyltrichlorosilane regions.  相似文献   

15.
Wet chemical cleaning of silicon is a critical step, e.g., pre-gate clean, in the semiconductor manufacturing[1]. For example, pre-gate oxide cleaning demands ultra-clean silicon surface with least surface roughness. It is well known that metallic infinities and roughness cause the lower breakdown voltage in gate dielectric[2]. It has stringent requirements for ultra-clean and atomically flat silicon surface as the thickness of gate oxide is decreasing. In the present work, we have extended our study on Si(100) surface13] and extensively investigated wet chemical cleaning of Si(111) and Si(100) surfaces in NH4F-based solutions by using scanning tunneling microscopy (STM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and total reflection X-ray fluorescence spectrometry (TXRF). Surface roughness, organic contamination, metallic impurities and surface termination on the silicon surfaces after wet chemical cleaning with various NH4F-based solutions have been determined and compared with those treated with RCA cleans, HF solutions and other industrially used solutions. Our results indicate that ultra-clean and smooth Si(111) and Si(001) surfaces are obtained by treatment with NH4F-based solutions.  相似文献   

16.
Chemical etching of silicon: Smooth, rough, and glowing surfaces   总被引:1,自引:0,他引:1  
Scanning Force Microscope images of silicon surface morphology are presented for samples exposed to various oxidizing environments followed by oxide removal. These are contrasted with samples exposed to HNO3/HF solutions. The former samples consistently produced surface roughness on the order of a few nanometers, while the latter solution exhibited surface roughness of several hundred to over a thousand nanometers. This rough surface is photoluminescent and is known as porous silicon. Careful observation of the onset of the reaction (which is proceeded by a concentration dependent induction period) suggests that the reaction mechanism is autocatalytic; some etchant product species catalyzes the further attack of the surface. Surface features of co-existing fluorescing and non-fluorescing regions emphasize the heavy etching present in the porous silicon region. Local control of the porous silicon formation by a photoinduced etching process is reported for the first time suggesting the possibility of a non-resist lithographic procedure.  相似文献   

17.
We describe protocols for the fabrication of microfluidic devices in plastics using a number of different embossing masters. Masters were fabricated by deep reactive ion etching (DRIE) of silicon (100), wet etching of silicon (100) and (110), and SU-8 processing. Structures embossed into a cyclo-olefin polymer were characterized in terms of the quality of pattern transfer as well as of the surface roughness. High quality pattern transfer was achieved with masters containing structures with angled sidewalls. Pattern distortions occurring during de-embossing were minimized by using masters consisting of SU-8 (which has a thermal expansion coefficient close to that of the substrates). Structures embossed with SU-8 masters also exhibited the lowest surface roughness. However, due to structural deformation, the reusability of the masters prepared for this study extended to only five embossing experiments. Masters fabricated on silicon, on the other hand, were more robust, but were subject to breakage during the de-embossing phase of the experiment. The results of this study will guide researchers in choosing master fabrication methods that will provide profile and surface characteristics of embossed microfluidic channels that are advantageous to their specific application.  相似文献   

18.
The surface roughness of a few asperities and their influence on the work of adhesion is of scientific interest. Macroscale and nanoscale adhesion data have seemingly given inconsistent results. Despite the importance of bridging the gap between the two regimes, little experimental work has been done, presumably due to the difficulty of the experiment needed to determine how small amounts of surface roughness might influence adhesion data lying in between the two scales. To investigate the role of few-asperity contacts in adhesion, the pull-off force was measured between different sized atomic-force microscope (AFM) tips (with different roughnesses) and sample surfaces that had well-controlled material properties. There were seventeen tips of four different types, with radii from 200 nm to 60 microm. The samples were unpatterned single crystal silicon with a chemical silicon dioxide surface resulting from a standard silicon wafer clean. Some of the samples were treated with a few angstroms of vapor deposited diphenylsiloxane. We observed that the uncorrected (for surface roughness) pull-off force was independent of the radius of the AFM tip, which was contrary to all continuum-mechanics model predictions. To explain this behavior, we assumed that the interactions between the AFM tip and sample were additive, material properties were constant, and that the AFM tip, asperities, and sample surfaces were of uniform density. Based on these assumptions, we calculated a simple correction due to the measured root mean square (RMS) surface roughness of the AFM tips. The simple correction for the RMS surface roughness resulted in the expected dependence of the pull-off force on radius, but the magnitudes were higher than expected. Commercial and heat-treated AFM tips have minimal surface roughness and result in magnitudes that are more reliable. The relative uncertainty for the pull-off force was estimated to be 10%. In this paper, we derive how the cantilever and tip parameters contribute to the measured pull-off force and show how the corrected results compare with theory. Although much work is still needed, the work presented here should advance the understanding of adhesion between the macroscale and nanoscale regimes.  相似文献   

19.
Uni-sized platinum clusters (size range of 5-40) on a silicon(111)-7 x 7 surface were prepared by depositing size-selected platinum cluster ions on the silicon surface at the collision energy of 1.5 eV per atom at room temperature. The surface thus prepared was observed by means of a scanning tunneling microscope (STM) at the temperature of 77 K under an ambient pressure less than 5 x 10(-9) Pa. The STM images observed at different cluster sizes revealed that (1) the clusters are flattened and stuck to the surface with a chemical-bond akin to platinum silicide, (2) every platinum atom occupies preferentially the most reactive sites distributed within a diameter of approximately 2 nm on the silicon surface at a cluster size up to 20, and above this size, the diameter of the cluster increases with the size, and (3) the sticking probability of an incoming cluster ion on the surface increases with the cluster size and reaches nearly unity at a size larger than 20.  相似文献   

20.
采用自组装技术在单晶硅表面制备了3-氨基丙基三乙氧基硅烷(APTES)-SiO2-APTES复合膜,并对其表面的组成、结构及摩擦性能进行了表征.结果表明:复合膜表面对水的接触角约为63°,且表面平整、致密,其平均粗糙度(Ra)约为0.963nm.通过原子力显微镜(AFM)和透射电子显微镜(TEM)观察到夹层中SiO2颗粒的粒径约为20-50nm,较均匀地分布在第一层APTES膜的表面.与APTES自组装单层膜(SAMs)相比,APTES-SiO2-APTES复合膜由于纳米SiO2颗粒的引入而表现出更低的摩擦系数和更长的耐磨寿命.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号