首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
A novel amperometric detector for heavy metal ions has been developed and successfully applied for ion pair chromatography. The detector is based on the electrochemical transfer of the metal ions across an array of water/nitrobenzene micro interfaces. The ion transfer is facilitated by the neutral ionophores methylenebis(diphenylphosphineoxide) and methylenebis(di- phenylphosphinesulfide). More than eight metals are separated in less than 15 min on an RP18 column using octyl sulfonate as ion pair reagent. For the heavy metals, the limits of decision are 19(Pb2+), 9(Zn2+), 9l (Co2+), 8(Cd2+) and 1.6(Mn2+) g/L. The applicability of the new method for water samples is demonstrated.  相似文献   

2.
L-Thiazolidine-4-carboxylic acid monolayer was prepared on gold electrodes through the self-assembly approach. Such novel thioether-based monolayer could efficiently preconcentrate Cu2+, which provided a simple, stable and reproducible method for the determination of Cu2+. The modified electrodes were stable enough to be continuously used for one week (more than 30 times regeneration) with lower than 10% decrease in the response. They retained their initial activity for more than one month if used once a day. The calibration curve was linear for Cu2+ from 0.6 to 158.8 μg L?1 with a detection limit of 0.38 μg L?1. The relative standard deviation was 3.2% for a series of six successive measurements. The proposed method was applied in the determination of Cu2+ in mineral water and human hair samples.  相似文献   

3.
A highly sensitive and accurate method for preconcentration and determination of ultra trace amounts of inorganic mercury and organomercury compounds in different water samples is proposed. The preconcentration is achieved using octadecyl silica (C18) extraction disks modified with 1,3-bis(2-cyanobenzene)triazene (CBT). The retained analytes as their triazenide complexes on the solid phase was eluted with 10 ml acetonitrile and measured by reversed-phase high-performance liquid chromatography (RP-HPLC). Type and amount of eluent, pH, amount of CBT, flow rates of sample solution and eluent have been optimized in order to obtain quantitative recovery of the analytes. The effect of interfering ions, such as Cu2+, Mn2+, Fe2+, Al3+, Zn2+, Cd2+, Ca2+, Mg2+, Ba2+, Pb2+, K+ and Na+ usually present in water samples on the recovery of the analytes has also been investigated. The enrichment factor of 100 was obtained for all mercury species and the analytical detection limits of phenylmercury, methylmercury and Hg2+ were found as 0.8, 1.0 and 1.3 ng l− 1, respectively. Stability of mercury species after extraction on the modified disks was studied and the results showed that complexes collected on the disks were stable for at least 5 days. The proposed method has been applied to the quantitative determination of mercury species in natural and synthetic water samples with recoveries more than 90%.  相似文献   

4.
The protonation and deprotonation rates of the coordinated amide groups in the Ni2+ and Cu2+ complexes of 3,7-diazanonanediamide (DANA) and in the Cu2+ complex of 3,7-diazanonane-N,N′-diethylamide (DANEA) have been studied by stopped-flow techniques. For the interconversion M(H?2L) ? ML, two consecutive reactions are observed in the case of Cu2+ with DANA or DANEA, whereas there is only one reaction for Ni2+ with DANA. Cu(H?2DANEA) is unusually labile, indicating a strong interaction between the N-ethyl groups. The conversion of the O- into the N-coordinated amide groups in NiDANA2+ is 25 times slower than in CuDANA2+. In the case of Ni2+ this excludes a step with water substitution, which is involved in one of the reaction paths observed for the Cu2+ complexes, since the rates of water exchange differ by a factor of 105 for the two metal ions.  相似文献   

5.
Mesoporous SBA-16 was synthesized using tetraethoxysilane as silicon source and a ternary system consisting of surfactant F127, water and butanol. Owing to the excellent properties of SBA-16 such as lager surface area and strong accumulation ability, the stripping peak current of Cd2+ and Pb2+ remarkably increases at the SBA-16 modified carbon paste electrode. Moreover, the peak current of Cd2+ and Pb2+ further enhances after the addition of I?. Under the joint enhancement effects of SBA-16 and I?, the detection sensitivity of Cd2+ and Pb2+ is greatly improved. The influences of concentration of I?, amount of SBA-16, accumulation potential and time were investigated. As a result, a new electrochemical method with high sensitivity was developed for the simultaneous determination of Cd2+ and Pb2+. The limit of detection is 0.6 nM for Cd2+ and 1 nM for Pb2+. It was used to determine Cd2+ and Pb2+ in waste water sample, and the results consisted with the values that obtained by atomic absorption spectrometry.  相似文献   

6.
A fast, simple, sensitive, and selective colorimetric method for the detection of Cu2+ was developed using Prussian blue/Turnbull’s blue nanoparticles (PBNPs/TBNPs) as the probe. The colorimetric sensor is based on the following principle. Cu2+ can induce the aggregation of L-cysteine (L-cys) modified-PBNPs/TBNPs (L-cys-PBNPs/TBNPs), resulting in an obvious red shift of its maximum absorption peak. Thus, the concentration of Cu2+ can be determined based on the peak shift in the UV–Vis spectra. The optimal pH, concentration of L-cys, reaction temperature between L-cys-PBNPs/TBNPs and Cu2+, the formation time of L-cys-PBNPs/TBNPs, and the reaction time between L-cys-PBNPs/TBNPs and Cu2+ of the method were determined to be pH 4.5, 2.0 mM, 20 °C, 5.0 min, and 2.0 min, respectively. A good linearity for the colorimetric determination of Cu2+ at the range of 0.25–2.5 μM (R2 = 0.986) was obtained, with a limit of detection (LOD) of 0.12 μM. Moreover, the negligible response of other metal ions demonstrates good selectivity and specificity of the sensor. In addition, the method was employed in the detection of Cu2+ in lake water samples, and the spiked recoveries are in the range of 96.7–106.6% with a relative standard deviation less than 7.4%. Therefore, the colorimetric method is applicable for Cu2+ detection in real water samples of high sensitivity and selectivity.  相似文献   

7.
This work describes the application of chitosan – chemically modified with 8-hydroxyquinoline – in a simple and efficient preconcentration system using flow injection flame atomic absorption spectrometry (FI-FAAS) for the determination of Pb2+ ions. The efficiency of the chelating resin and the accuracy of the proposed method were evaluated by the metal ion recovery technique in samples of mineral water, potable water and lake water. The recovery of Pb2+ ions from spiked solutions was less than 70% due to matrix effects, which were eliminated by addition of Ba2+ metal ions, resulting in recoveries of approximately 100% for all water samples. Ag+, Cd2+, Cu2+, Mn2+, Ni2+, Zn2+, Hg2+, Ca2+, Mg2+, Cr3+, Al3+ and Fe3+ metal ions were studied with respect to their interference with Pb2+ metal ion determination, and the chelating resin exhibited high selectivity for Pb2+ at pH 7. The analytical properties of merit were obtained using the parameters previously optimized. The method shows high precision with a relative standard deviation (R.S.D.) of 1.1% (n=7) for a solution containing 50µgL–1 of Pb2+ and a detection limit (L.O.D.) of 1.7µgL–1.  相似文献   

8.
The paper presents a new tool for the determination of inorganic speciation forms of aluminium: AlFn(3 n)+, and Al3+ by means of the HPIC-FAAS. The proposed method has been successfully used for speciation analysis (qualitative and quantitative) of inorganic aluminium forms AlFn(3 n)+ in soil samples. In order to isolate the most environmentally available fraction, 5 g of the sample was collected and extracted in deionised water (water soluble fraction) for 1 h using a magnetic stirrer. The determinations in a hyphenated technique system were performed for a number of prepared water extracts. Concentration determinations of particular aluminium forms were performed based on model studies and real samples. The separation of Al species with nominal charge of + 1, + 2, and + 3 required a run time of less than 4 min during a single analysis. Based on the analysis of water extracts of soil, it was obtained that aluminium forms elute in the following order: 1PA (first signal) — AlF2+ and/or AlF4; 2PA (second signal) — AlF2+ and/or AlF30; 3PA (third signal) — Al3+. In order to confirm the occurrence of these forms a simulation using the Mineql program was conducted. The details of speciation analysis of aluminium fluoride forms by means of an HPIC-FAAS instrument equipped are presented. Interpretation of the speciation analysis of the water soluble fraction of soil samples is proposed, based on the separation during chromatographic run and calculated data by Mineql.  相似文献   

9.
Amberlite XAD-4 modified with N-para-anisidine-3,5-di-tert-butylsalicylaldimine was investigated as a new chealting sorbent for the selective separation and preconcentration of Cu(II). The metal ion was retained by chemical sorption on the modified resin, eluted by hydrochloric acid, and determined by high-resolution continuum source flame atomic absorption spectrometry. The prepared resin was characterized for the solid-phase extraction of Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+, Pb2+, and Zn2+ in a column. The influence of the pH, the mass of solid phase, eluent, flow rate, and sample volume was optimized. Using the optimum conditions, only Cu(II) showed quantitative sorption at the 95% confidence level, and the recoveries of the other metal ions were below 80%. A preconcentration factor 125 was obtained for Cu(II) with a limit of detection of 0.56?µg?L?1. The method was used for the determination of Cu(II) in tap water, river water, tomato leaves, and fish. The relative standard deviation and the relative error were lower than 7%.  相似文献   

10.
We have developed a simple, sensitive and selective colorimetric method for the detection of cadmium(II) (Cd2+) using gold nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole. Organic solvents or additives are not required. It is found that Cd2+ induces the aggregation of the modified Au-NPs via chelation, leading to a color change from red to blue. This change can be seen with bare eyes, and monitored by UV–vis spectroscopy, transmission electron microscopy and dynamic light scattering. The detection limit is 30 nM (at a signal-to-noise ratio of 3). The new approach was successfully applied to the detection of Cd2+ in spiked samples of tap water and lake water, and the results agree well with those obtained by flame atomic absorption spectroscopy.
Graphic Abstract
A simple, sensitive and selective colorimetric method was developed for the detection of Cd2+, where 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol (AHMT) modified gold nanoparticles (AuNPs) were used as optical probes. The presence of Cd2+ induced the aggregation of the AHMT-AuNPs through the chelation process. This approach was successfully applied for the detection of Cd2+ in spiked samples of tap water and lake water.  相似文献   

11.
This work describes a rapid easy-to-use electrochemical method for quantifying lead (Pb2+) adsorption on metal oxide nanoparticles (NPs), demonstrated here for titanium dioxide (TiO2). The method was able to quantify Pb2+ adsorption for concentrations as low as 0.95 μM, and up to 200 μM in NP dispersions, and to differentiate ion uptake in the presence and absence of a natural organic material, humic acid (HA). The method was selective for Pb2+ against Cu2+, As3+, Zn2+, Cd2+ and Cr3+ ions when measured in the specific potential range from −0.4 to −0.6 V and was successfully demonstrated in water and home-collected dust.  相似文献   

12.
ALI Moghimi 《中国化学》2007,25(5):640-644
A fast and simple method for preconcentration of Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+ from natural water samples was developed. The metal ions were complexed with sodium diethyldithiocarbamate (Na-DDTC), then adsorbed onto octadecyl silica membrane disk, recovered and determined by FAAS. Extraction efficiency, influence of sample volume and eluent flow rates, effects of pH, amount of Na-DDTC, nature and amount of eluent for elution of metal ions from membrane disk, break through volume and limit of detection have been evaluated. The effect of foreign ions on the percent recovery of heavy metal ions has also been studied. The limit of detection of the proposed method for Ni^2+, Cd^2+, Pb^2+, Zn^2+, Cu^2+ and Co^2+was found to be 2.03, 0.47, 3.13, 0.44, 1.24 and 2.05 ng·mL^-1, respectively. The proposed (DDTC) method has been successfully applied to the recovery and determination of heavy metal ions in different water samples.  相似文献   

13.
With various concentrations of CaCl2 and MgCl2 aqueous solution below 1.0 mol/l, Raman spectra of water in the OH stretch region of 2500-4000 cm−1 and 17O NMR chemical shift of water are measured and the Raman spectra are deconvoluted. Both Raman spectra and 17O NMR of water show that the effect of Ca2+ on water structure is stronger than that of Mg2+. CaCl2 and MgCl2 destroy four hydrogen bonded water structure, but promote median water cluster size.  相似文献   

14.
Transition metal ions (Pb2+, Zn2+, Cd2+, Co2+, Mn2+, Cu2+, Ni2+, Hg2+, Ag+, Fe3+) in water are used to quench emission of 2-(6-oxido-6H-dibenz 〈c,e〉 〈1,2〉 oxaphosphorin-6-yl)-1,4-phenylene-bis(p-pentyloxylbenzoate)s (MD5) with aggregation-induced emission enhancement (AIEE) in water-acetonitrile (AN) mixture (80:20 by volume). Among all metal ions, Fe3+ exhibits the highest quenching efficiency on AIEE of MD5 even when the concentration of Fe3+ is lower than 1×10−6 mol/L. The quenching efficiency of Hg2+ is lower than that of Fe3+ at the same concentration, though MD5 is used to detect Hg2+ efficiently, too. To other metal ions, low quenching efficiency has few relations with a wider concentration range. The UV absorbance spectra show only red shift of absorbance wavelength in the presence of Hg2+ and Fe3+, which indicates a salt-induced Jaggregation. SEM photos reveal larger aggregation and morphological change of nanoparticles of MD5 in water containing Hg2+ and Fe3+, which reduce the surface area of MD5 emission for further aggregation. The selective quenching effect of transition metal ions to emission of MD5 has a potential application in chemical sensors of some metal ions.  相似文献   

15.
Copper is an indispensable trace element for human health. Too much or too little intake of copper ion (Cu2+) can lead to its own adverse health conditions. Therefore, detection of Cu2+ is always of vital importance. In this work, a simple sensor was developed for rapid detection of trace Cu2+ in water, in which L‐cysteine (Cys) as a molecular probe was self‐assembled on a gold interdigital electrode to form a monolayer for specific capture of Cu2+. The interfacial capacitance of interdigital electrode was detected to indicate the target adsorption level under an AC signal working as the excitation to induce directed movement and enrichment of Cu2+ to the electrode surface. This sensor reached a limit of detection of 4.14 fM and a satisfactory selectivity against eight other ions (Zn2+, Hg2+, Pb2+, Cd2+, Mg2+, Fe2+, As3+, and As5+). Testing of spiked tap water was also performed, demonstrating the sensor's usability. This sensor as well as the detection method shows a great application potential in fields such as environmental monitoring and medical diagnosis.  相似文献   

16.
    
Zusammenfassung Chelatbildende Ionenaustauscher auf der Basis von Cellulose werden beschrieben, die sich gut für die Abtrennung von Uran eignen. Die Verteilungskoeffizienten für Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, UO2 2+ und Zn2+ werden als Funktion des pH-Wertes bestimmt. Die Abtrennung von Uran in einer mit dem Celluloseaustauscher Hyphan gefüllten Trennsäule wird näher untersucht. Nach der Voranreicherung wird das Uran durch energiedisperse Röntgenfluorescenzanalyse bestimmt. Bei einem Probevolumen von 51 beträgt die Nachweisempfindlichkeit 0,3 ppb, der Zeitbedarf für die Analyse etwa 3–4 h. Diese Methode der Uranbestimmung wird auf eine Reihe von Wässern aus dem Bereich des Odenwaldes angewendet. Die Ergebnisse werden diskutiert.
Separation and X-Ray fluorescence analysis of dissolved uranium from natural water by means of chelating cellulose ion-exchangers (natural water samples as example)
Summary Chelating ion-exchangers on the basis of cellulose are described which are well suited for separation of uranium. The distribution coefficients for Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, UO2 2+ and Zn2+ are determined as function of pH. The separation of uranium in a column filled with the cellulose-exchanger Hyphan is investigated in more detail. After preconcentration uranium is determined by energy dispersive X-ray fluorescence. For a sample of 5 l volume the detection limit is 0.3 ppb and the time needed for 1 analysis is about 3–4 h. This method of uranium determination is applied to various natural water sources from the Odenwald region (Odins forest). The results are discussed.
  相似文献   

17.
《Electroanalysis》2017,29(2):441-447
A convenient and simple electrochemiluminescence (ECL) method was employed to detect trace amounts of Cu2+ in drinking water. This method is based on the inhibitory effect of Cu2+ on the ECL of Ru(phen)32+ and 1,4,8,11‐tetraazacyclotetradecane (cyclam) system. ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of cyclam because of the ECL reaction between them. The ECL intensity of Ru(phen)32+/cyclam system rapidy decreased with the addition Cu2+ because of the formation of chelate complex [Cu(cyclam)]2+. Good linear response (R 2=0.9948) was obtained at Cu2+ concentration of 1.0×10−9−1.0×10−5 mol ⋅ L−1 at glassy carbon electrode in 0.1 mol ⋅ L−1 phosphate buffer (pH 9.0). Observed detection limit of 4.8×10−10 mol ⋅ L−1 satisfied the maximum contaminant level goal (MCLG) for Cu2+ set by the US Environmental Protection Agency (US EPA). Applicability of the proposed method was verified by the good reproducibility and stability of the method when applied to determine Cu2+ in tap water and simulated wastewater. Thus, a novel ECL detection method was developed for Cu2+ detection.  相似文献   

18.
In the present study, a dual recognition strategy for ultrasensitive detection of Hg2+ was successfully developed for the first time based on aptamer functionalized sulfur quantum dots (Apt-SQDs). The developed Apt-SQDs not only retained the good fluorescence properties of quantum dots but also overcame the problem of poor selectivity of SQDs for heavy metal ions. This system used the dual recognition strategy, including the combination of Sx2? and Hg2+ and T-Hg2+-T structures to excellently identify and capture Hg2+, and an ultrahigh sensitivity fluorescent aptasensor was fabricated. The fluorescent aptasensor had a good response to Hg2+ at concentrations ranging of 10?15 to 10?7 M with an ultralow limit of detection of 0.3 fM, and the response to other metal ions was far less than that to Hg2+. It was successfully applied to detect Hg2+ in nearby environmental water samples (tap water, lake water and river water) with a good recovery rate. Moreover, portable test papers that would be useful for Hg2+ monitoring in environmental water were designed. The dual recognition strategy not only achieves ultrasensitive fluorescent detection of Hg2+ but also provides a new insight into the further expansion of the application of SQDs.  相似文献   

19.
A method is described for the differential determination of As(III) and As(V). and Sb(III) and Sb(V) by hydride generation-atomic absorption spectrophotometry with hydrogen-nitrogen flame using sodium borohydride solution as a reductant. For the determination of As(III) and Sb(III), most of the elements, other than Ag+, Cu2+, Sn2+, Se4+ and Te4+, do not interfere in an at least 30,000 fold excess with respect to As(III) or Sb(III). This method was applied to the determination of these species in sea water and it was found that a sample size of only 100 ml is enough to determine them with a precision of 1.5–2.5%. Analytical results for surface sea water of Hiroshima Bay were 0.72 μgl?1, 0.27 μgl?1 and 0.22 μgl?1 for As(total), As(III) and Sb(total), respectively, but Sb(III) was not detected in the present sample. The effect of acidification on storage was also examined.  相似文献   

20.
Hashemi P  Bagheri S  Fat'hi MR 《Talanta》2005,68(1):72-78
An agarose-based anion exchanger (Q-Sepharose) was loaded with chromotropic acid (CTA) and used for column preconcentration and determination of copper by flame AAS. Preliminary experiments indicated that a sample pH of 5.7-6.5 is best suited for accumulation of copper and a 2.5 ml portion of a 0.02 mol l−1 HCl solution can efficiently desorb the analyte from the column. An incomplete factorial design was used for optimization of five different variables that affect recovery of copper. The results indicated that ionic strength, pH and sample volume variables are the most important effects, respectively. Hence, these variables and their possible interactions were studied more carefully. In optimized conditions, the column could tolerate up to 0.18 mol l−1 sodium nitrate in the matrix. A 5 ml portion of a 0.02 mol l−1 CTA was sufficient for loading of a 0.5 ml column prior to preconcentration of copper from a 150 ml sample solution. Matrix ions of Ca2+, Mg2+, Na+ and K+ and potentially interfering ions of Pb2+, Ni2+, Cd2+, Co2+, Zn2+ and Mn2+ with relatively high concentrations did not have any significant effect on the recovery of the analyte. A preconcentration factor of 60 and a detection limit of 1.0 μg l−1 was obtained for the determination of copper by the flame AAS method. A precision better than 2.5%, expressed as R.S.D., was also achieved. Application of the method to tap water and two different river water samples resulted in values well confirmed by direct determinations with ET-AAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号