首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高智 《力学进展》2005,35(3):427-438
在计算机发达的时代, 高雷诺($Re$)数绕流计算中有无必要使用简化NS方程组, 本文讨论这个问题. 主要内容如下: (1)高$Re$数绕流包含3种基本流动: 所有方向对流占优流动、所有方向对流扩散竞争流动和部分方向对流占优部分方向对流扩散竞争流动(简称干扰剪切流动), 3个基本流动的特征彼此不同且在流场中所占领域大小彼此相差悬殊, NS方程区域很小,它们的最简单控制方程组Euler、Navier-Stokes (NS)和扩散抛物化(DP) NS方程组的数学性质彼此不同, 因此利用Euler-DPNS-NS方程组体系分析计算高$Re$数绕流流动就是一个合乎逻辑的选择, 该法与利用单一NS方程组的常用方法可以彼此检验和补充. (2)流体之间以及流体与外界的动量、能量和质量交换, 流态从层流到湍流的演化主要发生在干扰剪切流动中, 干扰剪切流及其最简单控制方程------DPNS方程组具有基础意义; DPNS方程组笔者在1967年已提出. (3)诸简化NS方程组: DPNS、抛物化(P)NS、薄层(TL)NS、黏性层(VL)NS方程组的发展、相互关系, 它们的历史贡献和今后的用途; 它们的数学性质均为扩散抛物型, 但它们包含的黏性项彼此有所不同; 从流体力学角度来看, 它们中只有DPNS方程组能够准确描述干扰剪切流动. 提出把诸简化NS方程组统一为DPNS方程组的建议. (4)干扰剪切流------DPNS方程组与无干扰剪切流------边界层方程组之间的关系以及进一步研究干扰剪切流的意义.   相似文献   

2.
A shear-layer-adapted subgrid length scale is applied to the improved delayed detached eddy simulation using the shear stress transport background model (SST-IDDES). The aim is to assess the combination of the wall-modeled LES (WMLES) branch of the SST-IDDES with the new length scale in computing attached flows, as well as to assess the effect of the new length scale when it is applied to the SST-IDDES for mitigating the “grey area” issue through initiating a dramatic drop of eddy viscosity in the initial region of a free shear layer. The assessment is conducted through simulations of a turbulent boundary layer, a fully developed channel flow, a near-sonic turbulent jet and a backward-facing step flow. The results provide strong evidence for the conclusion that the SST-IDDES combined with the new length scale performs the same as the original SST-IDDES when its WMLES branch is applied to compute the resolved parts of an attached flow, and the combination helps mitigate the “grey area” issue of the SST-IDDES and accurately represent the K-H instability in the initial region of a free shear layer. In addition, the superiority is particularly remarkable for the simulations with coarse grids.  相似文献   

3.
Using a numerical weather forecasting code to provide the dynamic large-scale inlet boundary conditions for the computation of small-scale urban canopy flows requires a continuous specification of appropriate inlet turbulence. For such computations to be practical, a very efficient method of generating such turbulence is needed. Correlation functions of typical turbulent shear flows have forms not too dissimilar to decaying exponentials. A digital-filter-based generation of turbulent inflow conditions exploiting this fact is presented as a suitable technique for large eddy simulations computation of spatially developing flows. The artificially generated turbulent inflows satisfy the prescribed integral length scales and Reynolds-stress-tensor. The method is much more efficient than, for example, Klein’s (J Comp Phys 186:652–665, 2003) or Kempf et al.’s (Flow Turbulence Combust, 74:67–84, 2005) methods because at every time step only one set of two-dimensional (rather than three-dimensional) random data is filtered to generate a set of two-dimensional data with the appropriate spatial correlations. These data are correlated with the data from the previous time step by using an exponential function based on two weight factors. The method is validated by simulating plane channel flows with smooth walls and flows over arrays of staggered cubes (a generic urban-type flow). Mean velocities, the Reynolds-stress-tensor and spectra are all shown to be comparable with those obtained using classical inlet-outlet periodic boundary conditions. Confidence has been gained in using this method to couple weather scale flows and street scale computations.  相似文献   

4.
细长体大迎角非对称涡流的数值研究   总被引:8,自引:0,他引:8  
通过数值方法对大迎角细长体低速湍流流场的模拟,探讨头部顶端极小扰动对细长体非对称绕流形成与发展的影响.结果表明在细长体顶端附近施加极小扰动可以模拟出实验观测到的非对称流场,非对称的涡系结构沿轴向是逐步发展的,截面侧向力沿轴向的分布呈现正弦型曲线的变化特征,扰动能量经过指数增长后达到饱和,有效扰动的规模影响涡流非对称性的大小及分布,单侧扰动产生的流场非对称性随扰动周向位置的变化呈现单周期性规律.小扰动诱发非对称的数值算例表明非对称绕流的形成是源于流场的空间不稳定性机制.  相似文献   

5.
A simple subgrid turbulent diffusion model based on an analogy to the von Neumann–Richtmyer artificial viscosity is explored for use in modelling mixing in turbulent stratified shear flow. The model may be more generally applicable to multicomponent turbulent hydrodynamics and to subgrid turbulent transport of momentum, composition and energy. As in the case of the von Neumann artificial viscosity and many subgrid-scale models for large-eddy simulation, the turbulent diffusivity explicitly depends on the grid size and is not based on a quantitative model of the unresolved turbulence. In order to address the issue that it is often not known a priori when and where a flow will become turbulent, the turbulent diffusivity is set to zero when the flow is expected to be stable on the basis of a Richardson/Rayleigh–Taylor stability criterion, in analogy to setting the von Neumann artificial viscosity to zero in expanding flows. One-dimensional predictions of this model applied to a simple shear flow configuration are compared to those obtained using a K–ε model. The density and velocity profiles predicted by both models are shown to be very similar.  相似文献   

6.
防风网透流风空气动力学特性大涡数值模拟研究   总被引:2,自引:2,他引:0  
基于有限体积法建立不可压缩粘性流体运动的大涡模拟模型,采用Smagorinsky-Lilly亚格子模型,并引入浸入边界法(IBM)实现无滑移固壁边界条件,对雷诺数30~30000之间防风网透流风进行模拟研究。基于模拟结果,提出蝶型防风网透流风存在4个典型分区结构,流场中存在由蝶型形态引起的大尺度分层剪切流动,加强流体动能耗散。透流风在雷诺数300时发生层流至湍流的转捩,而在雷诺数增长至3000以上时,湍流充分发展,纵向流速脉动强度可达70%。防风网整体空气阻力远大于单个孔口射流阻力的线性叠加,射流间的相互作用以及大尺度的分层剪切结构大大增加流体阻力损失,这为通过优化孔口布置和网板形态来节省材料提供了科学依据。  相似文献   

7.
A new turbulent flow with distinct three‐dimensional characteristics has been designed in order to study the impact of mean‐flow skewing on the turbulent coherent vortices and Reynolds‐averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette–Poiseuille flow enabled in‐depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non‐alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three‐dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near‐wall regions, were identified by the λ2‐criterion. Instantaneous and ensemble‐averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean‐flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean‐flow three‐dimensionality. The turning of the coherent vortices and the accompanying symmetry‐breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble‐averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near‐wall structures and the Reynolds‐averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two‐dimensional turbulent boundary layers remains valid also in flows with moderate mean three‐dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
We use Large Eddy Simulation to investigate the influence of upstream boundary conditions on the development of a backward facing step flow. The first inlet condition consists of a mean turbulent boundary layer velocity profile perturbed by a white noise. The second relies upon a precursor calculation where the development of a quasi-temporal turbulent boundary layer is simulated. In this case, the quasi-longitudinal vortices in the upstream turbulent boundary-layer trigger the destabilization of the shear layer just behind the step, resulting in a shortening of the recirculation length and an increase of the characteristic frequency associated to the Kelvin–Helmholtz vortices. The mean flow and the characteristic frequencies of pressure fluctuations are strongly dependent of the upstream flow. It demonstrates the importance of realistic boundary conditions for the simulation of complex 3D flows or for flow control simulations. To cite this article: J.-L. Aider, A. Danet, C. R. Mecanique 334 (2006).  相似文献   

9.
The spanwise oscillation of channel walls is known to substantially reduce the skin-friction drag in turbulent channel flows. In order to understand the limitations of this flow control approach when applied in ducts, direct numerical simulations of controlled turbulent duct flows with an aspect ratio of A R = 3 are performed. In contrast to channel flows, the spanwise extension of the duct is limited. Therefore, the spanwise wall oscillation either directly interacts with the duct side walls or its spatial extent is limited to a certain region of the duct. The present results show that this spanwise limitation of the oscillating region strongly diminishes the drag reduction potential of the control technique. We propose a simple model that allows estimating the achievable drag reduction rates in duct flows as a function of the width of the duct and the spanwise extent of the controlled region.  相似文献   

10.
借助γ-Reθ转捩模型,实现了高亚临界雷诺数(Re=1.4×105)下圆柱层流分离流动的尺度自适应模拟.统计平均结果表明数值计算和实验测量较为接近,尤其在圆柱后半段的分离区中,压力系数和实验符合得很好,误差主要源于分离点预测的不准确. 瞬态流动则显示,层流分离的剪切层中出现了展向不稳定,且在向下游的输运过程中不断增强,最后转捩为完全湍流. 在湍流分离模拟中,由于缺乏剪切层失稳的非定常性,SST-SAS 模型的尺度分辨能力变弱,因此在分离区以及下游尾迹中求解出的湍流尺度要明显较层流分离时大.  相似文献   

11.
In this article, large eddy simulation is used to simulate homogeneous shear flows. The spatial discretization is accomplished by the spectral collocation method and a third‐order Runge–Kutta method is used to integrate the time‐dependent terms. For the estimation of the subgrid‐scale stress tensor, the Smagorinsky model, the dynamic model, the scale‐similarity model and the mixed model are used. Their predicting performance for homogeneous shear flow is compared accordingly. The initial Reynolds number varies from 33 to 99 and the initial shear number is 2. Evolution of the turbulent kinetic energy, the growth rate, the anisotropy component and the subgrid‐scale dissipation rate is presented. In addition, the performance of several filters is examined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The objective of this paper is twofold: (1) to present a statistical model of particle transport and heat transfer in turbulent flows and (2) to examine the performance of this model in various turbulent flows going from a simple flow to a more complicated one. This model is based on a kinetic equation for the probability density function of the particle velocity and temperature distributions in anisotropic turbulent flow. The model predictions compare reasonable well with numerical simulations and properly reproduce the crucial trends of computations performed in various turbulent flows.  相似文献   

13.
Existing knowledge on particle deposition rates on walls from turbulent pipe and channel flows is summarized and it is shown that discrepancies exist between experimental and theoretical findings. To contribute to the existing experimental information, laser Doppler measurements are reported of the flow field of a glass particle-air two-phase flow. The results reveal certain seemingly peculiar behaviors of the particles which obviously defy the predictions of the conventional analyses of turbulent two-phase suspension flows.In an accompanying approximate, yet pragmatic theoretical approach, an attempt is made to find a rational basis for the explanation of these experimentally observed particle behaviors. It is shown for the particles in the present study, there exists a limiting size above which their response to the agitation of the fluctuating motion of the surrounding fluid could be treated as if the flow were laminar. On this rational basis, these experimentally observed particle behaviors can then be qualitatively explained by the existing theory of particle excursion in a laminar shear flow field.Reported also is a suggestion to extend the present analysis to a dispersion of particles of multiple sizes.  相似文献   

14.
 Most high Reynolds number flows of engineering interest are three-dimensional in nature. Key features of three-dimensional turbulent boundary layers (3DTBLs) include: non-colateral shear stress and strain rate vectors, and decreasing ratio of the shear stresses to the turbulent kinetic energy with increasing three-dimensionality. These are indicators that the skewing has a significant effect on the structure of turbulence. In order to further investigate the flow physics and turbulence structure of these complex flows, an innovative method for generating a planar shear-driven 3DTBL was developed. A specialized facility incorporating a relatively simple geometry and allowing for varying strengths of crossflow was constructed to facilitate studies where the skewing is decoupled from the confounding effects of streamwise pressure gradient and curvature. On-line planar particle image velocimetry (PIV) measurements and flow visualization results indicate that the experimental configuration generates the desired complex flow, which exhibits typical characteristics associated with 3DTBLs. Furthermore, spanwise shear results in modification of the near-wall turbulence structure. Analysis of near-wall flow visualization photographs revealed a reduction of mean streak length with increasing spanwise shear, while streak spacing remained relatively constant. In the most strongly sheared case, where the belt velocity is twice that of the freestream velocity, the mean streak length was reduced by approximately 50%. Received: 28 October 1997/Accepted: 4 February 1998  相似文献   

15.
杜磊  宁方飞 《力学学报》2014,46(4):487-496
借助γ-Reθ转捩模型,实现了高亚临界雷诺数(Re=1.4×105)下圆柱层流分离流动的尺度自适应模拟.统计平均结果表明数值计算和实验测量较为接近,尤其在圆柱后半段的分离区中,压力系数和实验符合得很好,误差主要源于分离点预测的不准确. 瞬态流动则显示,层流分离的剪切层中出现了展向不稳定,且在向下游的输运过程中不断增强,最后转捩为完全湍流. 在湍流分离模拟中,由于缺乏剪切层失稳的非定常性,SST-SAS 模型的尺度分辨能力变弱,因此在分离区以及下游尾迹中求解出的湍流尺度要明显较层流分离时大.   相似文献   

16.
Turbulence decay in a strongly stratified medium is simulated by a direct pseudo-spectral code solving the three-dimensional equations of motion under the Boussinesq approximation. The results are compared to non-stratified simulations results. We focus on the production of mean shear energy observed in the stratified case. We then simulate the decay of stratified turbulence when affected by an initial horizontal mean flow and show that this mean flow is the major component remaining at large t. Next, we give some analytical elements on wave-shear interaction by using a simple refraction calculation with WKB hypothesis. This calculation is illustrated by simulating the interaction between one monochromatic internal wave and a vertical shear profile. We conclude that the existence of singularities in the mean shear production term in the presence of internal gravity waves may be one of the possible mechanisms involved within stratified turbulent shear flows.  相似文献   

17.
A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a “simple” flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.  相似文献   

18.
This paper describes several flow visualization experiments carried out in Mach 3 and Mach 8 turbulent shear flows. The experimental technique was based on laser scattering from particles of H2O or CO2 condensate that form in the wind tunnel nozzle expansion process. The condensate particles vaporize extremely rapidly on entering the relatively hot fluid within a turbulent structure, so that a sharp vaporization interface marks the outer edge of the rotational shear layer fluid. Calculations indicate that the observed thin interface corresponds to a particle size of 10 nm or less, which is consistent with optical measurements, and that particles of this size track the fluid motions well. Further, calculations and experiments show that the freestream concentration of condensate required for flow visualization has only a small effect on the wind tunnel pressure distribution. Statistics based on the image data were compared to corresponding results from probe measurements and agreement was obtained in statistical measures of speed, scale, and orientation of the large-scale structures in the shear layer turbulence. The condensate-enhanced Rayleigh scattering technique is judged to be a useful tool for quantitative studies of shear layer structure, particularly for identifying the instantaneous boundary layer edge and for extracting comparative information on the large-scale structures represented there.  相似文献   

19.

A high-order low dissipative numerical framework is discussed to tackle simultaneously the modeling of unresolved sub-grid scale flow turbulence and the capturing of shock waves. The flows around two different airfoil profiles are simulated using a Spectral Difference discretisation scheme. First, a transitional, almost incompressible, low Reynolds number flow over a Selig-Donovan 7003 airfoil. Second, a high Reynolds number flow over a RAE2822 airfoil under transonic conditions. These flows feature both laminar and turbulent flow physics and are thus particularly challenging for turbulence sub-grid scale modeling. The accuracy of the recently developed Spectral Element Dynamic Model, specifically capable of detecting spatial under-resolution in high-order flow simulations, is evaluated. Concerning the test in transonic conditions, the additional complexity due to the presence of shock waves has been handled using an artificial viscosity shock-capturing technique based on bulk viscosity. To mitigate the impact of the shock-capturing on turbulence dissipation, it was necessary to combine the high-order modal-type shock detection with a usual sensor measuring the local flow compressibility.

  相似文献   

20.
Large-eddy simulations (LES) of high Reynolds number flows are performed using a non-body conformal method in conjunction with a wall model. We use a simple wall function to model the wall-shear stress and the truncation error of the numerical discretization to model the sub-grid scale turbulence (implicit LES), although these can be easily replaced if necessary. The validation cases are: turbulent flow through an inclined channel, turbulent flow over a wavy surface, and supersonic flow over a circular cylinder. Since the near-wall grids are naturally coarse, the key is to use a method that is capable of capturing the flow dynamics accurately in the vicinity of the interface. Towards the purpose, we develop a Cartesian cut-cell method, referred to as the ghost-cell based cut-cell method (GC-CCM), in the context of fully compressible solutions of Navier–Stokes equations. This method employs ghost-cells inside the solid interface such that the local spatial reconstruction remains consistent everywhere including in the vicinity of the boundary. In order to capture the near-wall flow behavior more accurately with coarse grids, this method decomposes cell faces of merged cells and computes fluxes through each decomposed segment separately. The objective of this work is to qualify whether the proposed method can accurately represent the high Reynolds number flows in the vicinity of immersed interfaces. To analyze the performance of the proposed method, we compare the results to the corresponding numerical results from the two other non-body conformal methods, namely the ghost-cell based immersed boundary method (GCIBM) and standard cut-cell method (S-CCM), that are implemented in the same numerical solver. The comparison demonstrates that the proposed method is capable of capturing near-wall flows relatively accurately with coarse grids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号