首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research work was to evaluate the possibility of upgrading the simulated biogas (70?% CH4 and 30?% CO2) for hydrogen-rich syngas production using a multi-stage AC gliding arc system. The results showed that increasing stage number of plasma reactors, applied voltage and electrode gap distance enhanced both CH4 and CO2 conversions, in contrast with the increases in feed flow rate and input frequency. The gaseous products were mainly H2 and CO, with small amounts of C2H2, C2H4 and C2H6. The optimum conditions for hydrogen-rich syngas production using the four-stage AC gliding arc system were a feed flow rate of 150?cm3/min, an input frequency of 300?Hz, an applied voltage of 17?kV and an electrode gap distance of 6?mm. At the minimum power consumption (3.3?×?10?18?W?s/molecule of biogas converted and 2.8?×?10?18?W?s/molecule of syngas produced), CH4 and CO2 conversions were 21.5 and 5.7?%, respectively, H2 and CO selectivities were 57.1 and 14.9?%, respectively, and H2/CO (hydrogen-rich syngas) was 6.9. The combination of the plasma reforming and partial oxidation provided remarkable improvements to the overall process performance, especially in terms of reducing both the power consumption and the carbon formation on the electrode surface but the produced syngas had a much lower H2/CO ratio, depending on the oxygen/methane feed molar ratio. The best feed molar ratio of O2-to-CH4 ratio was found to be 0.3/1, providing the CH4 conversion of 81.4?%, CO2 conversion of 49.3?%, O2 conversion of 92.4?%, H2 selectivity of 49.5?%, CO selectivity of 49.96?%, and H2/CO of 1.6.  相似文献   

2.
A novel type of plasma reactor having a rotating electrode is proposed for CO2 reforming of methane without catalyst at room temperature and atmospheric pressure. Results indicated that employing rotating ground electrode leads to a stable discharge for any period of time. Effects of feed composition, feed flow rate, applied power and electrodes separation on the carbon dioxide and methane conversions as well as the products selectivity were investigated. Increasing CO2/CH4 molar ratio in the feed favors the reagents conversion and consequently promotes the formation of hydrogen and carbon monoxide. If the target product is hydrogen, it is proposed to operate the reactor at CO2/CH4 = 1 molar ratio and if the target product is carbon monoxide then CO2/CH4 = 3 molar ratio is the preferred option for feed composition. This reactor system has advantages of stable operation and high conversion ability. Also, the obtained syngas with flexible molar ratio of H2 to CO is suitable for vast industrial applications.  相似文献   

3.
In this research, the reforming of simulated natural gas containing a high CO2 content under AC non-thermal gliding arc discharge with partial oxidation was conducted at ambient temperature and atmospheric pressure, with specific regards to the concept of the direct utilization of natural gas. This work aimed at investigating the effects of applied voltage and input frequency, as well as the effect of adding oxygen on the reaction performance and discharge stability in the reforming of the simulated natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. The results showed marked increases in both CH4 conversion and product yield with increasing applied voltage and decreasing input frequency. The selectivities for H2, C2H6, C2H4, C4H10, and CO were observed to be enhanced at a higher applied voltage and at a lower frequency, whereas the selectivity for C2H2 showed an opposite trend. The use of oxygen was found to provide a great enhancement of the plasma reforming of the simulated natural gas. For the combined plasma and partial oxidation in the reforming of CO2-containing natural gas, air was found to be superior to pure oxygen in terms of reactant conversions, product selectivities, and specific energy consumption. The optimum conditions were found to be a hydrocarbons-to-oxygen feed molar ratio of 2/1 using air as an oxygen source, an applied voltage of 17.5 kV, and a frequency of 300 Hz, in providing the highest CH4 conversion and synthesis gas selectivity, as well as extremely low specific energy consumption. The energy consumption was as low as 2.73 × 10−18 W s (17.02 eV) per molecule of converted reactant and 2.49 × 10−18 W s (16.60 eV) per molecule of produced hydrogen.  相似文献   

4.
The thermodynamic equilibrium for the steam-carbon dioxide conversion of methane was studied by Gibbs energy minimization. The degree of coke formation, the content of methane and carbon dioxide in the synthesis gas, and the synthesis gas H2/CO ratio were plotted as functions of the molar ratios of CO2/CH4 and H2O/CH4 in the initial mixture at different temperatures and pressures. The regions of the optimum CH4/CO2/H2O molar ratios for steam-carbon dioxide conversion were discovered, with no coke formation taking place in these regions. The optimized CH4/CO2/H2O molar fractions characterized by the minimum content of methane and carbon dioxide in the synthesis gas were found for each region.  相似文献   

5.
Dry reforming of CH4 with CO2 to produce syngas was investigated in a plasma reactor without catalysts at atmospheric pressure. The reactants passed through the plasma zone and reacted in milliseconds with high conversions and selectivity due to the localized high temperature. The results showed that both conversions and selectivity were higher when using a DC arc discharge than using a pulsed DC arc. Increasing the input energy density promoted the conversions of reactants. At an input power of 204 W, the conversions of CO2 and CH4 reached 99.3 and 99.6%, respectively, and the selectivity to products was almost 100%, where the molar ratio of CO2/CH4 was 1 with the reactants flow rate of 100 ml/min. Very little coke was formed during the course of reaction. Key parameters such as the pulse frequency, the input power and the total feed flow rate were studied to find the optimum operating condition.  相似文献   

6.
In this study, a technique of combining steam reforming with partial oxidation of CO2-containing natural gas in a gliding arc discharge plasma was investigated. The effects of several operating parameters including: hydrocarbons (HCs)/O2 feed molar ratio; input voltage; input frequency; and electrode gap distance; on reactant conversions, product selectivities and yields, and power consumptions were examined. The results showed an increase in either methane (CH4) conversion or synthesis gas yield with increasing input voltage and electrode gap distance, whereas the opposite trends were observed with increasing HCs/O2 feed molar ratio and input frequency. The optimum conditions were found at a HCs/O2 feed molar ratio of 2/1, an input voltage of 14.5?kV, an input frequency of 300?Hz, and an electrode gap distance of 6?mm, providing high CH4 and O2 conversions with high synthesis gas selectivity and relatively low power consumptions, as compared with the other processes (sole natural gas reforming, natural gas reforming with steam, and combined natural gas reforming with partial oxidation).  相似文献   

7.
Reduction of carbon monoxide to methane by hydrogen was investigated with a nonthermal plasma reactor in which Ni/alumina catalyst pellets was filled. The effect of reaction temperature, pressure and voltage on the conversion of CO was examined. It was found that the nonthermal plasma significantly enhanced the catalytic conversion of CO. The effect of the nonthermal plasma was especially remarkable at lower temperatures and pressures. At high temperatures, the catalyst itself exhibited very high catalytic activity for the conversion of CO. Since high pressure is unfavorable for creating electrical discharge plasma, the increase in pressure lowered the discharge power, thereby weakening the effect of the nonthermal plasma. With the nonthermal plasma alone, there was no conversion of CO. The reaction products identified by FTIR spectra were CH4, CO2 and H2O. FTIR spectra also showed that CO was converted primarily into CH4 with high selectivity above 90% at most experimental conditions.  相似文献   

8.
Partial oxidation of methane(POM) co-fed with CO2 to syngas in a novel catalytic BaCo0.6Fe0.2Ta0.2O3-δ oxygen permeable membrane reactor was successfully reported.Adding CO2 to the partial oxidation of methane reaction not only alters the ratio of CO/H2,but also increases the oxygen permeation flux and CH4 conversion.Around 96%CH4 conversion with more than 93%CO2 conversion and 100%CO selectivity is achieved,which shows an excellent reaction performance.A steady oxygen permeation flux of 15 mL/(cm2 min) is obtained during the 100-h operation,which shows good stability as well.  相似文献   

9.
The carbon dioxide reforming of methane to synthesis gas under DC-pulsed plasma was investigated. The effects of specific input energy and feed ratio on the product distribution and also feed conversion was studied. At the input energy of about 11 eV/molecule per methane and/or carbon dioxide the feed conversion of 38% for CH4 and 28% for CO2 and product selectivity of 74% has been attained for H2 and CO at feed flow rate of 90 ml/min. The energy consumption in this work displays potential to further study and optimization of the process. The importance of the electron impact reactions in the process was discussed. The results show that by prudent tuning of system variables, the process be able to run in the way of synthesis gas, instead of hydrocarbon production.  相似文献   

10.
《中国化学快报》2022,33(5):2590-2594
Reverse water gas shift (RWGS) reaction is a crucial process in CO2 utilization. Herein, Ni- and NiCe-containing hexagonal mesoporous silica (Ni-HMS and NiCe-HMS) catalysts were synthesized using an in-situ one-pot method and applied for RWGS reaction. At certain reaction temperatures 500-750 °C, Ni-HMS samples displayed a higher selectivity to the preferable CO than that of conventionally impregnated Ni/HMS catalyst. This could be originated from the smaller NiO nanoparticles over Ni-HMS catalyst. NiCe-HMS exhibited higher activity compared to Ni-HMS. The catalysts were characterized by means of TEM, XPS, XRD, H2-TPR, CO2-TPD, EPR and N2 adsorption-desortion technology. It was found that introduction of Ce created high concentration of oxygen vacancies, served as the active site for activating CO2. Also, this work analyzed the effect of the H2/CO2 molar ratio on the best NiCe-HMS. When reaction gas H2/CO2 molar ratio was 4 significantly decreased the selectivity to CO at low temperature, but triggered a higher CO2 conversion which is close to the equilibrium.  相似文献   

11.
A factorial experimental design was combined with response surface methodology(RSM) to opti-mize the catalyzed CO2 consumption by coke deposition and syngas production during the dry re-forming of CH4. The CH4 /CO2 feed ratio and the reaction temperature were chosen as the variables, and the selected responses were CH4 and CO2 conversion, the H2 /CO ratio, and coke deposition. The optimal reaction conditions were found to be a CH4 /CO2 feed ratio of approximately 3 at 700 °C, producing a large quantity of coke and realizing high CO2 conversion. Furthermore, Raman results showed that the CH4 /CO2 ratio and reaction temperature affect the system's response, particularly the characteristics of the coke produced, which indicates the formation of carbon nanotubes and amorphous carbon.  相似文献   

12.
The oxidative stream reforming of methane (OSRM) to syngas, involving coupling of exothermic partial oxidation of methane (POM) and endothermic steam reforming of methane (SRM) processes, was studied in a thin tubular Al2O3-doped SrCo0.8Fe0.2O3−δ membrane reactor packed with a Ni/γ-Al2O3 catalyst. The influences of the temperature and feed concentration on the membrane reaction performances were investigated in detail. The methane and steam conversions increased with increasing the temperature and high conversions were obtained in 850–900 °C. Different from the POM reaction, in the OSRM reaction the temperature and H2O/CH4 profoundly influenced the CO selectivity, H2/CO and heat of the reaction. The CO selectivity increased with increasing the temperature or decreasing the H2O/CH4 ratio in the feed owing to the water gas shift reaction (H2O + CO → CO2 + H2). And the H2 selectivity based on methane conversion was always 100% because the net steam conversion was greater than zero. The H2/CO in product could be tuned from 1.9 to 2.8 by adjusting the reaction temperature or H2O/CH4. Depending on the temperature or H2O/CH4, furthermore, the OSRM process could be performed auto-thermally with idealized reaction condition.  相似文献   

13.
Methane conversions of 11.9%, yields of hydrogen as high as 23.3% and energy yields of 1.0 mol H2/kWh have been achieved from CO2 reforming of CH4 in non-thermal, atmospheric pressure plasma reactors with Pt coated electrodes. Two reactors have been studied. A novel fan type reactor consisting of a movable rotor and immobile stator produced the highest yields in contrast to a tube type (silent discharge) reactor with a glass dielectric barrier. Conversions, yields of hydrogen and energy yields (expressed as mol H2/kWh) were studied for CO2/CH4 concentrations of 1.1% and 5.0% in He as a function of flow rate and input voltage. Hydrogen yields are observed to increase as the input voltage is increased from 411 V to 911 V and the flow rate is decreased from 100 cc/min to 30 cc/min. Energy yields vary only slightly with input voltage and flow rate. Hydrogen yields show little dependence on CO2/CH4 concentrations, but energy yields are approximately five times greater for the 5.0% mixture than the 1.1% mixture. Selectivities to H2, CO, coke, and low molecular weight hydrocarbons were also evaluated and compared to data obtained without CO2 in the feed. Hydrogen selectivities of nearly 100% were obtained, with small amounts of ethane and propane as the only observed side products and the selectivites were approximately the same whether CO2 was present or absent in the mixture. However, the reaction proceeds much more cleanly when CO2 is present, producing CO. The syngas product has an H2 : CO ratio of 1.5 with the fan type reactor and 0.67 with the tubular reactor. In the absence of CO2, coke is the main carbonaceous product. Under all conditions studied the fan type reactor demonstrated higher methane conversions (up to 11.9%) and selectivities to hydrogen.  相似文献   

14.
We have studied the production of synthesis gas and other hydrocarbons in a dielectric barrier discharge using mixtures of helium, methane and carbon dioxide. It was found that helium has a significant influence on the discharge, decreasing the breakdown voltage and increasing the rate of conversion of CH4 and CO2. However it also decreases the selectivities and the range of stable operating conditions for the discharge. The main products obtained were H2, CO, C2H6 and C3H8 but traces of other hydrocarbon, carbon deposition and the formation of condensable products were also detected. The rate of conversion and conversion abilities were obtained by fitting the conversion results to a model.  相似文献   

15.
In this study, a Pd catalyst was prepared with promoters such as CeO2, BaO and SrO in a washcoated form on a metallic monolith for autothermal reforming of methane to syngas for the Fischer-Tropsch synthesis. A reactor was installed with an electric heater in the form of the metallic monolith as a start-up device instead of a burner with which stable and fast start-ups (within 4 min) were achieved. Gas hourly space velocity and O2/CH4 governed, methane conversion, while H2O/CH4 controlled H2/CO ratio. A methane conversion of approx. 96%, H2+CO selectivity of approx. 85%, and H2/CO of approx. 2.6 were obtained under the conditions of gas hourly space velocity (GHSV) at 103000 h?1, O2/CH4=0.7 and H2O/CH4=0.35.  相似文献   

16.
The effect of stage number of multistage AC gliding arc discharge reactors on the process performance of the combined reforming and partial oxidation of simulated CO2-containing natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20 was investigated. For the experiments with partial oxidation, either pure oxygen or air was used as the oxygen source with a fixed hydrocarbon-to-oxygen molar ratio of 2/1. Without partial oxidation at a constant feed flow rate, all conversions of hydrocarbons, except CO2, greatly increased with increasing number of stages from 1 to 3; but beyond 3 stages, the reactant conversions remained almost unchanged. However, for a constant residence time, only C3H8 conversion gradually increased, whereas the conversions of the other reactants remained almost unchanged. The addition of oxygen was found to significantly enhance the process performance of natural gas reforming. The utilization of air as an oxygen source showed a superior process performance to pure oxygen in terms of reactant conversion and desired product selectivity. The optimum energy consumption of 12.05 × 1024 eV per mole of reactants converted and 9.65 × 1024 eV per mole of hydrogen produced was obtained using air as an oxygen source and 3 stages of plasma reactors at a constant residence time of 4.38 s.  相似文献   

17.
An AC-pulsed tornado gliding arc plasma was employed for CO2 conversion via CO2 decomposition and dry reforming reactions. A stable and high-efficient constant arc length discharge mode was obtained in this plasma reactor. And then, CO2 conversion was studied under this discharge mode. In the case of CH4/CO2 = 0, CO2 was converted to CO and O2 via the CO2 decomposition reaction. Energy efficiency of 29 % was attained at CO2 conversion of 6 %. With strong reducing agent CH4 added into CO2, the main contributor of CO2 conversion changed from CO2 decomposition to dry reforming of CH4. Conversions of CH4 and CO2, energy efficiency and energy cost changed sharply at CO2/CH4 ratios lower than 1/4, while they changed slowly at CH4/CO2 ratios above 1/4. In the case of CH4/CO2 = 2/3, energy efficiency of 68 % and syngas energy cost of 1.6 eV/mole were achieved at CH4 conversion of 29 % and CO2 conversion of 22 %.  相似文献   

18.
A gas-chromatographic procedure was developed for determining impurities (CH4, C2H6, C3H8, C4H10, iso-C4H10, C5H12, iso-C5H12, neo-C5H12, CH3Cl, C2H5Cl, CH2Cl2, CHCl3, CO, and CO2) in hydrogen chloride using two columns and a column switching technique in an isothermal mode with a flame ionization detector; the detection limits were 0.01–0.1 ppm. The matrix was separated in a precolumn packed with urea. CO and CO2 were determined by reaction gas chromatography with their conversion into methane.  相似文献   

19.
研究了钠、钾助剂对FeMn 合成低碳烯烃催化剂结构及性能的影响. 低温N2吸附、X射线光电子能谱(XPS)、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、CO/CO2程序升温脱附(CO/CO2-TPD)、Mössbauer 谱和CO+H2反应的研究结果表明,增加Mn助剂含量促进了活性相的分散和低碳烯烃的生成,而过多锰助剂在催化剂表面的富集则降低了费托合成反应的CO转化率;钾助剂和钠助剂的加入均抑制了催化剂的还原并且促进了CO2和CO的吸附. 比较还原后(H2/CO摩尔比为20)和反应后(H2/CO摩尔比为3.5)催化剂的体相结构可以发现,在FeMn、FeMnNa和FeMnK催化剂中,由于钾助剂的碱性和CO吸附能力较强,因此体相中FeCx的含量相对较高;而活性测试结果表明,FeMnNa催化剂拥有最好的CO转化率(96.2%)和低碳烯烃选择性(30.5%,摩尔分数).  相似文献   

20.
用大气压下火花放电方法和发射光谱原位诊断技术, 对CH4直接转化制乙炔和间接转化制合成气进行了研究, 并与介质阻挡放电进行了比较。结果表明, 火花放电具有能量效率高的突出优点, 能够高效地将CH4活化成C原子、H原子和C2等活泼物种。当CH4单独进料时, 能得到以C2H2为主的烃类产物。当CH4与CO2和O2共进料时, 能得到H2/CO比值可调的合成气产物。在用火花放电转化CH4和CO2制合成气时, 添加O2能够避免反应器的结炭问题, 反应温度只需225 ℃, 与常规催化法相比具有明显的低温优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号