共查询到20条相似文献,搜索用时 15 毫秒
1.
The rise of topological insulators in recent years has broken new ground both in the conceptual cognition of condensed matter physics and the promising revolution of the electronic devices.It also stimulates the explorations of more topological states of matter.Topological crystalline insulator is a new topological phase,which combines the electronic topology and crystal symmetry together.In this article,we review the recent progress in the studies of SnTe-class topological crystalline insulator materials.Starting from the topological identifications in the aspects of the bulk topology,surface states calculations,and experimental observations,we present the electronic properties of topological crystalline insulators under various perturbations,including native defect,chemical doping,strain,and thickness-dependent confinement effects,and then discuss their unique quantum transport properties,such as valley-selective filtering and helicity-resolved functionalities for Dirac fermions.The rich properties and high tunability make SnTe-class materials promising candidates for novel quantum devices. 相似文献
2.
There is a peculiar type of insulator, which is protected by the crystal symmetry known as topological crystalline insulator (TCI). In off-resonant cases, Floquet theory is an another way to study conventional Rabi oscillations. By using Floquet theory, the various type of Dirac fermionic systems and phases can be distinguished. In this article, it is shown that Floquet frequency can be used as a tool to distinguish different phases of TCI. The study of Bloch-Siegert shift has been performed and shown its variation in different phases of TCI. The collapse-revival spectra have also been studied in the perspective of Floquet theory and shown how quantum and classical Floquet oscillations are related to each other. The verification of the Floquet theory is justified by using numerical simulation. 相似文献
3.
《中国科学:物理学 力学 天文学(英文版)》2020,(10)
Topological crystalline insulator(TCI) is one of the symmetry-protected topological states. Any TCI can be deformed into a simple product state of several decoupled two-dimensional(2 D) topologically nontrivial layers in its lattice respecting its crystalline symmetries called the layer construction(LC) limit. In this work, based on first-principles calculations we have revealed that both tetragonal LaSbTe(t-LaSbTe) and orthorhombic LaSbTe(o-LaSbTe) can be interpreted as stacking of 2 D topological insulators in each lattice space. The structural phase transition from t-LaSbTe to o-LaSbTe due to soft phonon modes demonstrates how the real space change can lead to the modification of topological states. Their symmetry-based indicators and topological invariants have been analyzed based on LC. We propose that LaSbTe is an ideal example demonstrating the LC paradigm, which bridges the crystal structures in real space to the band topology in momentum space. 相似文献
4.
Hamlin JJ Jeffries JR Butch NP Syers P Zocco DA Weir ST Vohra YK Paglione J Maple MB 《J Phys Condens Matter》2012,24(3):035602
We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 toward increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance Δρ(xx) that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3. 相似文献
5.
Hao OuYang 《中国物理 B》2021,30(12):127101-127101
We report the transport properties of a topological insulator candidate, LiMgBi. The electric resistivity of the title compound exhibits a metal-to-semiconductor-like transition at around 160 K and tends to saturation below 50 K. At low temperatures, the magnetoresistance is up to ~260% at 9 T and a clear weak antilocalization effect is observed in the low magnetic-field region. The Hall measurement reveals that LiMgBi is a multiband system, where hole-type carriers (nh~1018 cm-3) play a major role in the transport process. Remarkably, LiMgBi possess a large Seebeck coefficient (~440 μV/K) and a moderate thermal conductivity at room temperature, which indicate that LiMgBi is a promising candidate in thermoelectric applications. 相似文献
6.
7.
Bumned Soodchomshom Peerasak Chantngarm 《Physica C: Superconductivity and its Applications》2010,470(21):1949-1954
This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage VG, respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength χ ∼ md /?vF. With the barrier strength Z ∼ VGd /?vF, the number of peaks N is determined through the relation Z ∼ Nπ + σπ (with 0 < σ?1 for χ < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene. 相似文献
8.
文章讨论了三维拓扑绝缘体制备和输运性质研究方面的进展情况.首先介绍了拓扑绝缘体体材料和薄膜的制备,并介绍了文章作者利用分子束外延方法,在硅表面以及高介电常数材料钛酸锶表面生长高质量拓扑绝缘体Bi2Se3薄膜的工作.然后介绍了拓扑绝缘体输运研究的现状,以及文章作者在栅电压调控拓扑绝缘体外延薄膜的化学势和输运性质方面的研究成果. 相似文献
9.
In this review, we present a summary of some recent experiments on topological insulators (TIs) and superconducting nanowires and fihns. Electron electron interaction (EEI), weak anti-localization (WAL) and anisotropic magneto-resistance (AMR) effect fbund in topological insulator fihns by transport measurements are reported. Then, transport properties of superconducting films, bridges and nanowires and proximity effect in non-superconducting nanowires are described. Finally, the interplay between topological insulators and superconductors (SCs) is also discussed. 相似文献
10.
Ferromagnetic-insulators-modulated transport properties on the surface of a topological insulator 下载免费PDF全文
Transport properties on the surface of a topological insulator (TI) under the modulation of a two-dimensional (2D) ferromagnet/ferromagnet junction are investigated by the method of wave function matching. The single ferromagnetic barrier modulated transmission probability is expected to be a periodic function of the polarization angle and the planar rotation angle, that decreases with the strength of the magnetic proximity exchange increasing. However, the transmission probability for the double ferromagnetic insulators modulated n-n junction and n-p junction is not a periodic function of polarization angle nor planar rotation angle, owing to the combined effects of the double ferromagnetic insulators and the barrier potential. Since the energy gap between the conduction band and the valence band is narrowed and widened respectively in ranges of 0 ≤ 0 〈π/2 and r/2 〈 0 ≤ π, the transmission probability of the n-n junction first increases rapidly and then decreases slowly with the increase of the magnetic proximity exchange strength. While the transmission probability for the n-p junction demonstrates an opposite trend on the strength of the magnetic proximity exchange because the band gaps contrarily vary. The obtained results may lead to the possible realization of a magnetic/electric switch based on TIs and be useful in further understanding the surface states of TIs. 相似文献
11.
文章讨论了三维拓扑绝缘体制备和输运性质研究方面的进展情况.首先介绍了拓扑绝缘体体材料和薄膜的制备,并介绍了文章作者利用分子束外延方法,在硅表面以及高介电常数材料钛酸锶表面生长高质量拓扑绝缘体Bi2Se3薄膜的工作.然后介绍了拓扑绝缘体输运研究的现状,以及文章作者在栅电压调控拓扑绝缘体外延薄膜的化学势和输运性质方面的研究成果. 相似文献
12.
Time-periodic perturbations can be used to engineer topological properties of matter by altering the Floquet band structure. This is demonstrated for the helical edge state of a spin Hall insulator in the presence of monochromatic circularly polarized light. The inherent spin structure of the edge state is influenced by the Zeeman coupling and not by the orbital effect. The photocurrent (and the magnetization along the edge) develops a finite, helicity-dependent expectation value and turns from dissipationless to dissipative with increasing radiation frequency, signalling a change in the topological properties. The connection with Thouless' charge pumping and nonequilibrium zitterbewegung is discussed, together with possible experiments. 相似文献
13.
We study the fractional quantum Hall states on the surface of a topological insulator thin film in an external magnetic field, where the Dirac fermion nature of the charge carriers have been experimentally established only recently. Our studies indicate that the fractional quantum Hall states should indeed be observable in the surface Landau levels of a topological insulator. The strength of the effect will however be different, compared to that in graphene, due to the finite thickness of the topological insulator film and due to the admixture of Landau levels of the two surfaces of the film. At a small film thickness, that mixture results in a strongly nonmonotonic dependence of the excitation gap on the film thickness. At a large enough thickness of the film, the excitation gap in the lowest two Landau levels are comparable in strength. 相似文献
14.
Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses backscattering and protects the coherence of these states in the presence of nonmagnetic scatterers. In contrast, magnetic scatterers should open the backscattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon the adsorption of various magnetic and nonmagnetic impurities on the surface of Bi2Se3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both nonmagnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment. 相似文献
15.
We show that, when a three-dimensional (3D) narrow-gap semiconductor with inverted band gap (“topological insulator,” TI) is attached to a 3D wide-gap semiconductor with non-inverted band gap (“normal insulator,” NI), two types of bound electron states having different spatial distributions and spin textures arise at the TI/NI interface. Namely, the gapless (“topological”) bound state can be accompanied by the emergence of the gapped (“ordinary”) bound state. We describe these states in the framework of the envelope function method using a variational approach for the energy functional; their existence hinges on the ambivalent character of the constraint for the envelope functions that correspond to the “open” or “natural” boundary conditions at the interface. The properties of the ordinary state strongly depend on the effective interface potential, while the topological state is insensitive to the interface potential variation. 相似文献
16.
《中国物理快报》2018,(12)
Using an extended slave-boson method,we draw a global phase diagram summarizing both magnetic phases and paramagnetic(PM) topological insulators(TIs) in a three-dimensional topological Kondo insulator(TKI). By including electron hopping(EH) up to the third neighbors, we identify four strong TI(STI) phases and two weak TI(WTI) phases. Then, the PM phase diagrams characterizing topological transitions between these TIs are depicted as functions of EH,f-electron energy level,and hybridization constant. We also find an insulator-metal transition from an STI phase that has surface Fermi rings and spin textures in qualitative agreement with the TKI candidate SmBs. In the weak hybridization regime, antiferromagnetic(AF) order naturally arises in the phase diagrams. Depending on how the magnetic boundary crosses the PM topological transition lines,AF phases are classified into the AF topological insulator(AFTI) and the non-topological AF insulator, according to their Z_2 indices. In two small regions of parameter space, two distinct topological transition processes between AF phases occur, leading to two types of AFTIs showing distinguishable surface dispersions around their Dirac points. 相似文献
17.
拓扑近藤绝缘体是一种本征的强关联拓扑电子体系,其体能隙来源于近藤关联效应。自2010年拓扑近藤绝缘体的理论概念被提出后,六硼化钐(SmB6) 作为第一种被预测为拓扑近藤绝缘体的材料在这十多年中被多种实验手段反复研究验证,被广泛接受认为是第一种拓扑近藤绝缘体。在这篇综述中,我们回顾了关于SmB6 的一些重要实验结果,比如电输运测量,角分辨光电子能谱(ARPES), 表面形貌分析(STM) 等,并论述了如何通过这些关键的实验证据证实SmB6 的拓扑近藤绝缘物相。同时,我们也展示了SmB6 这一关联电子体系的其他奇异物性,包括中间价态在表面和体内的分离现象,以及量子振荡发现的体振荡信号等等。这些性质表明我们对SmB6 这一材料的理解仍然不充分,其中还有更为丰富的物理值得挖掘。 相似文献
18.
Exciton edge states and the microwave edge exciton absorption of a 2D topological insulator subject to the in-plane magnetic field are studied. The magnetic field forms a narrow gap in electron edge states that allows the existence of edge exciton. The exciton binding energy is found to be much smaller than the energy of a 1D Coulomb state. Phototransitions exist on the exciton states with even numbers, while odd exciton states are dark. 相似文献
19.
Topological insulator is a new state of quantum matter. When applied magnetic field is applied on a topological insulator, not only the magnetic field is induced, but also the electric field is induced, vice versa. We designed bi-layer magnetic cloak with topological insulator and high permeability material (HPM), derived the electric field and magnetic field inside and outside the bi-layer topological insulator and HPM. Calculation and simulation results show that the applied magnetic field is cloaked by the bi-layer topological insulator and HPM, and the uniform electric field is induced in the cloaked region. 相似文献
20.
Spin transport properties in ferromagnet/superconductor junctions on topological insulator 下载免费PDF全文
The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator (TI) ferromagnet/superconductor (FM/SC) junction. The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory. It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection. The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections. There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero. These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures. 相似文献