共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
1.引言 在科学工程计算中经常需要计算大规模矩阵的少数最大或最小的奇异值及其所对应的奇异子空间。例如图像处理中要计算矩阵端部奇异值之比作为图像的分辨率,诸如此类的问题还存在于最小二乘问题、控制理论、量子化学中等等。然而大多实际问题中的矩阵是大型稀疏矩阵,且需要的是矩阵的部分奇异对。如果计算A的完全奇异值分解(SVD),则运算量和存储量极大,甚至不可能。因此必须寻求其它有效可靠的算法。 假设A的SVD为 相似文献
3.
求解大规模Hamilton矩阵特征问题的辛Lanczos算法的误差分析 总被引:2,自引:0,他引:2
对求解大规模稀疏Hamilton矩阵特征问题的辛Lanczos算法给出了舍入误差分析.分析表明辛Lanczos算法在无中断时,保Hamilton结构的限制没有破坏非对称Lanczos算法的本质特性.本文还讨论了辛Lanczos算法计算出的辛Lanczos向量的J一正交性的损失与Ritz值收敛的关系.结论正如所料,当某些Ritz值开始收敛时.计算出的辛Lanczos向量的J-正交性损失是必然的.以上结果对辛Lanczos算法的改进具有理论指导意义. 相似文献
4.
对于求解大规模矩阵特征问题的经典正交投影类方法 ,当矩阵非Hermite时 ,Ritz向量收敛比Ritz值收敛要困难得多 .已有一类新的精化正交投影类方法 ,它们用精化的近似特征向量取代标准的Ritz向量来逼近所求的特征向量 .证明了在某种意义下 ,每个精化方法是两个经典方法的复合 ,精化近似特征向量满足某个Her mite半正定矩阵在同一个子空间上的经典正交投影 ,进而 ,用特征向量到子空间的距离建立了精化近似特征向量的先验误差界 .结果表明 ,精化的近似特征向量和对应的Ritz值收敛的充分条件相同 . 相似文献
5.
一类正交投影矩阵及其相关正交表 总被引:4,自引:0,他引:4
本文给出了一类正交投影矩阵及其相关的强度2正交表.使用这些正交投影矩阵和正交表,我们提供了一种构造正交表的方法,并且构造了一些混合水平正交表. 相似文献
6.
具有矩阵伸缩的尺度函数双正交特征 总被引:1,自引:0,他引:1
考虑了高维具有矩阵伸缩的尺度函数双正交性问题.给出了这种情形下尺度函数双正交性的三个特征刻划及尺度函数属于L2(Rd)的几个充分条件. 相似文献
7.
李登峰 《数学年刊A辑(中文版)》2001,(5)
考虑了高维具有矩阵伸缩的尺度函数双正交性问题.给出了这种情形下尺度函数双正交性的三个特征刻划及尺度函数属于L~2(R~d)的几个充分条件. 相似文献
8.
双对称矩阵逆特征值问题解存在的条件 总被引:11,自引:1,他引:11
This paper discuss the following two problems:Problem I. Given . Find A,such thatAX=XA,where BSRn×n is the set of all n × n bisymmetric matrices.Problem II. Given Find A SE such that where SE is the solution set of Problem I,is the Frobenius norm.In this paper, the sufficient and necessary conditions under which SE is nonempty are obtained. The general form of SE has been given. Then expression of the solution A of Problem II is presented. 相似文献
9.
解非对称矩阵特征值问题的一种并行分治算法 总被引:3,自引:0,他引:3
1引言考虑矩阵特征值问题其中A是非对称矩阵.通过正交变换(如Householder变换或Givens变换),A可化为上Hessenberg形.因而,本文假设A为上Hessenberg矩阵,表示如下:不失一般性,进一步假设所有的(j=2,…,n),即认为A是不可约的关于如何求解上述问题,人们进行了不懈的努力,提出了许多行之有效的算法[1-8].其中分治算法因具有良好的并行性而引人注目.分治算法的典型代表是基于同伦连续的分治算法[2,3,4]和基于Newton迭代的分治算法[1].本文提出一种新的分… 相似文献
10.
读了《数学通报》一九九○年第三期《用正交变换化实二次型的标准形方法研究》(以下简称[1])一文之后,颇受启发。笔者这里就该文所举的例子提供一种更为简便的求正交特征向量的方法。这种方法不需要对矩阵进行初等变换,而只需要采用简单的算术运算。下面先用[1]中的例子来说明这种方法。例1 已知λ=1为[1]中矩阵 相似文献
11.
The two-sided Lanczos method is popular for computing a few selected eigentriplets of large non-Hermitian matrices. However, it has been revealed that theRitz vectors gained by this method may not converge even if the subspaces are good enough and the associated eigenvalues converge. In order to remedy this drawback, a novel method is proposed which is based on the refined strategy, the quasi-refined ideaand the Lanczos biothogonalization procedure, the resulting algorithm is presented. Therelationship between the new method and the classical oblique projection technique isalso established. We report some numericalwith the conventional one, the results showthe latter.experiments and compare the new algorithmthat the former is often more powerful than 相似文献
12.
The singular value decomposition problem is mathematically equivalent to the eigenproblem of an argumented matrix. Golub et al. give a bidiagonalization Lanczos method for computing a number of largest or smallest singular values and corresponding singular vertors, but the method may encounter some convergence problems. In this paper we analyse the convergence of the method and show why it may fail to converge. To correct this possible nonconvergence, we propose a refined bidiagonalization Lanczos method and apply the implicitly restarting technique to it, and we then present an implicitly restarted bidiagonalization Lanczos algorithm(IRBL) and an implicitly restarted refined bidiagonalization Lanczos algorithm (IRRBL). A new implicitly restarting scheme and a reliable and efficient algorithm for computing refined shifts are developed for this special structure eigenproblem.Theoretical analysis and numerical experiments show that IRRBL performs much better than IRBL. 相似文献
13.
Jia Zhongxiao 《中国科学A辑(英文版)》1989,42(6):577-585
For classical orthogonal projection methods for large matrix eigenproblems, it may be much more difficult for a Ritz vector
to converge than for its corresponding Ritz value when the matrix in question is non-Hermitian. To this end, a class of new
refined orthogonal projection methods has been proposed. It is proved that in some sense each refined method is a composite
of two classical orthogonal projections, in which each refined approximate eigenvector is obtained by realizing a new one
of some Hermitian semipositive definite matrix onto the same subspace. Apriori error bounds on the refined approximate eigenvector are established in terms of the sine of acute angle of the normalized
eigenvector and the subspace involved. It is shown that the sufficient conditions for convergence of the refined vector and
that of the Ritz value are the same, so that the refined methods may be much more efficient than the classical ones.
Project supported by the China State Major Key Projects for Basic Researches, the National Natural Science Foundation of China
(Grant No. 19571014), the Doctoral Program (97014113), the Foundation of Excellent Young Scholors of Ministry of Education,
the Foundation of Returned Scholars of China and the Liaoning Province Natural Science Foundation. 相似文献
14.
在很多实际应用中需要计算大规模矩阵的若干个最小奇异组.调和投影方法是计算内部特征对的常用方法,其原理可用于求解大规模奇异值分解问题.本文证明了,当投影空间足够好时,该方法得到的近似奇异值收敛,但近似奇异向量可能收敛很慢甚至不收敛.根据第二作者近年来提出的精化投影方法的原理,本文提出一种精化的调和Lanczos双对角化方法,证明了它的收敛性.然后将该方法与Sorensen提出的隐式重新启动技术相结合,开发出隐式重新启动的调和Lanczos双对角化算法(IRHLB)和隐式重新启动的精化调和Lanczos双对角化算法(IRRHLB).位移的合理选取是算法成功的关键之一,本文对精化算法提出了一种新的位移策略,称之为"精化调和位移".理论分析表明,精化调和位移比IRHLB中所用的调和位移要好,且可以廉价可靠地计算出来.数值实验表明,IRRHLB比IRHLB要显著优越,而且比目前常用的隐式重新启动的Lanczos双对角化方法(IRLB)和精化算法IRRLB更有效. 相似文献
15.
According to the refined projection principle advocated by Jia[8], we improve the residual iteration method of quadratic eigenvalue problems and propose a refined residual iteration method. We study the restarting issue of the method and develop a practical algorithm. Preliminary numerical examples illustrate the efficiency of the method. 相似文献
16.
J. I. Aliaga D. L. Boley R. W. Freund V. Herná ndez. 《Mathematics of Computation》2000,69(232):1577-1601
Given a square matrix and single right and left starting vectors, the classical nonsymmetric Lanczos process generates two sequences of biorthogonal basis vectors for the right and left Krylov subspaces induced by the given matrix and vectors. In this paper, we propose a Lanczos-type algorithm that extends the classical Lanczos process for single starting vectors to multiple starting vectors. Given a square matrix and two blocks of right and left starting vectors, the algorithm generates two sequences of biorthogonal basis vectors for the right and left block Krylov subspaces induced by the given data. The algorithm can handle the most general case of right and left starting blocks of arbitrary sizes, while all previously proposed extensions of the Lanczos process are restricted to right and left starting blocks of identical sizes. Other features of our algorithm include a built-in deflation procedure to detect and delete linearly dependent vectors in the block Krylov sequences, and the option to employ look-ahead to remedy the potential breakdowns that may occur in nonsymmetric Lanczos-type methods.
17.
JIA Zhongxiao 《中国科学A辑(英文版)》2004,47(Z1)
Refined projection methods proposed by the author have received attention internationally. We are concerned with a conventional projection method and its refined counterpart for computing approximations to a simple eigenpair (A, x) of a large matrix A. Given a subspace ω that contains an approximation to x, these two methods compute approximations (μ,x) and (μ,x) to (λ, x), respectively. We establish three results. First, the refined eigenvector approximation or simply the refined Ritz vector x is unique as the 相似文献