首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents a new multiobjective immune algorithm based on a multiple-affinity model inspired by immune system (MAM-MOIA). The multiple-affinity model builds the relationship model among main entities and concepts in multiobjective problems (MOPs) and multiobjective evolutionary algorithms (MOEAs), including feasible solution, variable space, objective space, Pareto-optimal set, ranking and crowding distance. In the model, immune operators including clonal proliferation, hypermutation and immune suppression are designed to proliferate superior antibodies and suppress the inferiors. MAM-MOIA is compared with NSGA-II, SPEA2 and NNIA in solving the ZDT and DTLZ standard test problems. The experimental study based on three performance metrics including coverage of two sets, convergence and spacing proves that MAM-MOIA is effective for solving MOPs.  相似文献   

2.
The performance of a scheduling system, in practice, is not evaluated to satisfy a single objective, but to obtain a trade-off schedule regarding multiple objectives. Therefore, in this research, I make use of multiple objective decision-making method, a global criterion approach, to develop a multi-objective scheduling problem model with different due-dates on parallel machines processes, in which consider three performance measures, namely minimum run time of every machine, earlierness time (no tardiness) and process time of every job, simultaneously. According to this special multi-objective scheduling problem, the method of reverse order drawing GATT will be proposed, at the same time, bring forward a united search particle swarm optimization algorithm (USPSOA) solves this multi-objective scheduling problem. The validity and adaptability of the USPSOA is investigated through experimental results.  相似文献   

3.
This paper presents an alternative approach using genetic algorithm to a new variant of the unbalanced assignment problem that dealing with an additional constraint on the maximum number of jobs that can be assigned to some agent(s). In this approach, genetic algorithm is also improved by introducing newly proposed initialization, crossover and mutation in such a way that the developed algorithm is capable to assign optimally all the jobs to agents. Computational results with comparative performance of the algorithm are reported for four test problems.  相似文献   

4.
The objective of this research was the development of a method that integrated an activity analysis model of profits from production with a biophysical model, and included the capacity for optimization over multiple objectives. We specified a hybrid genetic algorithm using activity analysis as a local search method, and NSGA-II for calculation of the multiple objective Pareto optimal set. We describe a parallel computing approach to computation of the genetic algorithm, and apply the algorithm to evaluation of an input tax to regulate pollution from agricultural production.  相似文献   

5.
We present a new multiobjective evolutionary algorithm (MOEA), called fast Pareto genetic algorithm (FastPGA), for the simultaneous optimization of multiple objectives where each solution evaluation is computationally- and/or financially-expensive. This is often the case when there are time or resource constraints involved in finding a solution. FastPGA utilizes a new ranking strategy that utilizes more information about Pareto dominance among solutions and niching relations. New genetic operators are employed to enhance the proposed algorithm’s performance in terms of convergence behavior and computational effort as rapid convergence is of utmost concern and highly desired when solving expensive multiobjective optimization problems (MOPs). Computational results for a number of test problems indicate that FastPGA is a promising approach. FastPGA yields similar performance to that of the improved nondominated sorting genetic algorithm (NSGA-II), a widely-accepted benchmark in the MOEA research community. However, FastPGA outperforms NSGA-II when only a small number of solution evaluations are permitted, as would be the case when solving expensive MOPs.  相似文献   

6.
7.
The Pareto-based approaches have shown some success in designing multiobjective evolutionary algorithms (MEAs). Their methods of fitness assignment are mainly from the information of dominated and nondominated individuals. On the top of the hierarchy of MEAs, the strength Pareto evolutionary algorithm (SPEA) has been elaborately designed with this principle in mind. In this paper, we propose a (μ+λ) multiobjective evolutionary algorithm ((μ+λ) MEA), which discards the dominated individuals in each generation. The comparisons of the experimental results demonstrate that the (μ+λ) MEA outperforms SPEA on five benchmark functions with less computational efforts.  相似文献   

8.
A new algorithm for the generalised assignment problem is described in this paper. The algorithm is adapted from a genetic algorithm which has been successfully used on set covering problems, but instead of genetically improving a set of feasible solutions it tries to genetically restore feasibility to a set of near-optimal ones. Thus it may be regarded as operating in a dual sense to the more familiar genetic approach. The algorithm has been tested on generalised assignment problems of substantial size and compared to an exact integer programming approach and a well-established heuristic approach.  相似文献   

9.
A hybrid immune multiobjective optimization algorithm   总被引:1,自引:0,他引:1  
In this paper, we develop a hybrid immune multiobjective optimization algorithm (HIMO) based on clonal selection principle. In HIMO, a hybrid mutation operator is proposed with the combination of Gaussian and polynomial mutations (GP-HM operator). The GP-HM operator adopts an adaptive switching parameter to control the mutation process, which uses relative large steps in high probability for boundary individuals and less-crowded individuals. With the generation running, the probability to perform relative large steps is reduced gradually. By this means, the exploratory capabilities are enhanced by keeping a desirable balance between global search and local search, so as to accelerate the convergence speed to the true Pareto-optimal front in the global space with many local Pareto-optimal fronts. When comparing HIMO with various state-of-the-art multiobjective optimization algorithms developed recently, simulation results show that HIMO performs better evidently.  相似文献   

10.
A new multiobjective simulated annealing algorithm for continuous optimization problems is presented. The algorithm has an adaptive cooling schedule and uses a population of fitness functions to accurately generate the Pareto front. Whenever an improvement with a fitness function is encountered, the trial point is accepted, and the temperature parameters associated with the improving fitness functions are cooled. Beside well known linear fitness functions, special elliptic and ellipsoidal fitness functions, suitable for the generation on non-convex fronts, are presented. The effectiveness of the algorithm is shown through five test problems. The parametric study presented shows that more fitness functions as well as more iteration gives more non-dominated points closer to the actual front. The study also compares the linear and elliptic fitness functions. The success of the algorithm is also demonstrated by comparing the quality metrics obtained to those obtained for a well-known evolutionary multiobjective algorithm.  相似文献   

11.
This paper presents a hybrid genetic algorithm (GA) for the container loading problem with boxes of different sizes and a single container for loading. Generated stowage plans include several vertical layers each containing several boxes. Within the procedure, stowage plans are represented by complex data structures closely related to the problem. To generate offspring, specific genetic operators are used that are based on an integrated greedy heuristic. The process takes several practical constraints into account. Extensive test calculations including procedures from other authors vouch for the good performance of the GA, above all for problems with strongly heterogeneous boxes.  相似文献   

12.
This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as time windows and vehicle capacity. To solve such a multiobjective and multi-modal combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A new way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions for the VRPSD and the solutions are robust to the stochastic nature of the problem. The developed algorithm is further validated on a few VRPSD instances adapted from Solomon’s vehicle routing problem with time windows (VRPTW) benchmark problems.  相似文献   

13.
We propose a weighting subgradient algorithm for solving multiobjective minimization problems on a nonempty closed convex subset of an Euclidean space. This method combines weighting technique and the classical projected subgradient method, using a divergent series steplength rule. Under the assumption of convexity, we show that the sequence generated by this method converges to a Pareto optimal point of the problem. Some numerical results are presented.  相似文献   

14.
We present a genetic approach for finding efficient solutions to the problem of forming manufacturing cells for products having multiple routings. We consider the case where there are two criteria. The method that we propose seeks to generate the efficient set of solutions, that is the set of non-dominated solutions. The manager may then choose a solution knowing the consequences for each of the objectives. We address the computational difficulty of this problem and present a numerical example.  相似文献   

15.
This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.  相似文献   

16.
This paper presents a hybrid genetic algorithm for the job shop scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.  相似文献   

17.
In the context of telecommunication networks, the network terminals involve certain constraints that are either related with the performance of the corresponding network or with the availability of some classes of devices. In this paper, we discuss a tree-like telecommunication network design problem with the constraint limiting the number of terminals. First, this problem is formulated as a leaf-constrained minimum spanning tree (lc-MST). Then we develop a tree-based genetic representation to encode the candidate solutions of the lc-MST problem. Compared with the existing heuristic algorithm, the numerical results show the high effectiveness of the proposed GA approach on this problem.  相似文献   

18.
For remanufacturing or recycling companies, a reverse supply chain is of prime importance since it facilitates in recovering parts and materials from end-of-life products. In reverse supply chains, selective separation of desired parts and materials from returned products is achieved by means of disassembly which is a process of systematic separation of an assembly into its components, subassemblies or other groupings. Due to its high productivity and suitability for automation, disassembly line is the most efficient layout for product recovery operations. A disassembly line must be balanced to optimize the use of resources (viz., labor, money and time). In this paper, we consider a sequence-dependent disassembly line balancing problem (SDDLBP) with multiple objectives that requires the assignment of disassembly tasks to a set of ordered disassembly workstations while satisfying the disassembly precedence constraints and optimizing the effectiveness of several measures considering sequence dependent time increments. A hybrid algorithm that combines a genetic algorithm with a variable neighborhood search method (VNSGA) is proposed to solve the SDDLBP. The performance of VNSGA was thoroughly investigated using numerous data instances that have been gathered and adapted from the disassembly and the assembly line balancing literature. Using the data instances, the performance of VNSGA was compared with the best known metaheuristic methods reported in the literature. The tests demonstrated the superiority of the proposed method among all the methods considered.  相似文献   

19.
The generalized traveling salesman problem is a variation of the well-known traveling salesman problem in which the set of nodes is divided into clusters; the objective is to find a minimum-cost tour passing through one node from each cluster. We present an effective heuristic for this problem. The method combines a genetic algorithm (GA) with a local tour improvement heuristic. Solutions are encoded using random keys, which circumvent the feasibility problems encountered when using traditional GA encodings. On a set of 41 standard test problems with symmetric distances and up to 442 nodes, the heuristic found solutions that were optimal in most cases and were within 1% of optimality in all but the largest problems, with computation times generally within 10 seconds. The heuristic is competitive with other heuristics published to date in both solution quality and computation time.  相似文献   

20.
In this paper we propose a Hybrid Genetic Algorithm (HGA) for the Resource-Constrained Project Scheduling Problem (RCPSP). HGA introduces several changes in the GA paradigm: a crossover operator specific for the RCPSP; a local improvement operator that is applied to all generated schedules; a new way to select the parents to be combined; and a two-phase strategy by which the second phase re-starts the evolution from a neighbour’s population of the best schedule found in the first phase. The computational results show that HGA is a fast and high quality algorithm that outperforms all state-of-the-art algorithms for the RCPSP known by the authors of this paper for the instance sets j60 and j120. And that it is competitive with other state-of-the-art heuristics for the instance set j30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号