首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A time fractional advection-dispersion equation is obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order α(0<α<-1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.  相似文献   

2.
In this paper, a compact finite difference method is proposed for the solution of time fractional advection-dispersion equation which appears extensively in fluid dynamics. In this approach the time fractional derivative of mentioned equation is approximated by a scheme of order O(τ 2???α ), 0?<?α?<?1, and spatial derivatives are replaced with a fourth order compact finite difference scheme. We will prove the unconditional stability and solvability of proposed scheme. Also we show that the method is convergence with convergence order O(τ 2???α ?+?h 4). Numerical examples confirm the theoretical results and high accuracy of proposed scheme.  相似文献   

3.
This work presents an iterative scheme for the numerical solution of the space-time fractional two-dimensional advection–reaction–diffusion equation applying homotopy perturbation with Laplace transform using Caputo fractional-order derivatives. The solution obtained is beneficial and significant to analyze the modeling of superdiffusive systems and subdiffusive system, anomalous diffusion, transport process in porous media. This iterative technique presents the combination of homotopy perturbation technique, and Laplace transforms with He's polynomials, which can further be applied to numerous linear/nonlinear two-dimensional fractional models to computes the approximate analytical solution. In the present method, the nonlinearity can be tackle by He's polynomials. The salient features of the present scientific work are the pictorial presentations of the approximate numerical solution of the two-dimensional fractional advection–reaction–diffusion equation for different particular cases of fractional order and showcasing of the damping effect of reaction terms on the nature of probability density function of the considered two-dimensional nonlinear mathematical models for various situations.  相似文献   

4.
The fundamental solutions for the fractional diffusion-wave equation   总被引:6,自引:0,他引:6  
The time fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order 2β with 0 < β ≤ 1/2 or 1/2 < β ≤ 1, respectively. Using the method of the Laplace transform, it is shown that the fundamental solutions of the basic Cauchy and Signalling problems can be expressed in terms of an auxiliary function M(z;β), where z = |x|/tβ is the similarity variable. Such function is proved to be an entire function of Wright type.  相似文献   

5.
6.
We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order β∈(0, 2] and the first-order time derivative with Caputo derivative of order α∈(0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.  相似文献   

7.
In this paper, a Cauchy problem for the time fractional advection-dispersion equation (TFADE) is investigated. Such a problem is obtained from the classical advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order . We show that the Cauchy problem of TFADE is severely ill-posed and further apply a spectral regularization method to solve it based on the solution given by the Fourier method. The convergence estimate is obtained under a priori bound assumptions for the exact solution. Numerical examples are given to show the effectiveness of the proposed numerical method.  相似文献   

8.
In the papers, dealing with derivation and applications of operational matrices of Bernstein polynomials, a basis transformation, commonly a transformation to power basis, is used. The main disadvantage of this method is that the transformation may be ill-conditioned. Moreover, when applied to the numerical simulation of a functional differential equation, it leads to dense operational matrices and so a dense coefficient matrix is obtained. In this paper, we present a new property for Bernstein polynomials. Using this property, we build exact banded operational matrices for derivatives of Bernstein polynomials. Next, as an application, we propose a new numerical method based on a Petrov-Galerkin variational formulation and the new operational matrices utilizing the dual Bernstein basis for the time-fractional advection-dispersion equation. We show that the proposed method leads to a narrow-banded linear system and so less computational effort is required to obtain the desired accuracy for the approximate solution. We also obtain the error estimation for the method. Some numerical examples are provided to demonstrate the efficiency of the method and to support the theoretical claims.  相似文献   

9.
In this paper, we consider two types of space-time fractional diffusion equations(STFDE) on a finite domain. The equation can be obtained from the standard diffusion equation by replacing the second order space derivative by a Riemann-Liouville fractional derivative of order β (1 < β ≤ 2), and the first order time derivative by a Caputo fractional derivative of order γ (0 < γ ≤ 1). For the 0 < γ < 1 case, we present two schemes to approximate the time derivative and finite element methods for the space derivative, the optimal convergence rate can be reached O(τ2?γ + h2) and O(τ2 + h2), respectively, in which τ is the time step size and h is the space step size. And for the case γ = 1, we use the Crank-Nicolson scheme to approximate the time derivative and obtain the optimal convergence rate O(τ2 + h2) as well. Some numerical examples are given and the numerical results are in good agreement with the theoretical analysis.  相似文献   

10.
11.
The space-time fractional diffusion-wave equation (FDWE) is a generalization of classical diffusion and wave equations which is used in modeling practical phenomena of diffusion and wave in fluid flow, oil strata and others. This paper reports an accurate spectral tau method for solving the two-sided space and time Caputo FDWE with various types of nonhomogeneous boundary conditions. The proposed method is based on shifted Legendre tau (SLT) procedure in conjunction with the shifted Legendre operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided fractional derivatives. We focus primarily on implementing this algorithm in both temporal and spatial discretizations. In addition, convergence analysis is provided theoretically for the Dirichlet boundary conditions, along with graphical analysis for several special cases using other conditions. These suggest that the Legendre Tau method converges exponentially provided that the data in the given FDWE are smooth. Finally, several numerical examples are given to demonstrate the high accuracy of the proposed method.  相似文献   

12.
In this paper, we consider a two-dimensional fractional spacetime diffusion equation (2DFSTDE) on a finite domain. We examine an implicit difference approximation to solve the 2DFSTDE. Stability and convergence of the method are discussed. Some numerical examples are presented to show the application of the present technique.  相似文献   

13.
In this paper, based on the variational approach and iterative technique, the existence of nontrivial weak solutions is derived for a fractional advection-dispersion equation with impulsive effects, and the nonlinear term of fractional advection-dispersion equation contain the fractional order derivative. In addition, an example is presented as an application of the main result.  相似文献   

14.
15.
证明了右端可测的各项异性椭圆方程基本解的存在性,其中应用了各项异性Sobolev空间和Lebesgue空间.首先得到近似方程的解,然后通过对这些解的子列取极限,得到原方程的解.关键是要有一个近似函数空间以及近似方程的先验估计.最后运用Vitali定理证明了原方程基本解的存在性,推广和改进了已有方程.  相似文献   

16.
We focus on a numerical scheme applied for a fractional oscillator equation in a finite time interval. This type of equation includes a complex form of left- and right-sided fractional derivatives. Its analytical solution is represented by a series of left and right fractional integrals and therefore is difficult in practical calculations. Here we elaborated two numerical schemes being dependent on a fractional order of the equation. The results of numerical calculations are compared with analytical solutions. Then we illustrate convergence and stability of our schemes.  相似文献   

17.
首先,把分数阶波方程转换成等价的积分-微分方程;然后,利用带权的分数阶矩形公式和紧差分算子分别对时间和空间方向进行离散.证明了当权重为1/2时,时间方向的收敛阶为α,其中α(1α2)为Caputo导数的阶数.利用Gronwall不等式,证明了数值格式的收敛性和稳定性.数值例子进一步表明了数值格式的有效性.  相似文献   

18.
In present paper the parabolic equation solution is built. The construction is reduced to iterative procedure. And convergence of the latter is proven.  相似文献   

19.
20.
In terms of weak solutions of the fractional p-Laplace equation with measure data, this paper offers a dual characterization for the fractional Sobolev capacity on bounded domain. In addition, two further results are given: one is an equivalent estimate for the fractional Sobolev capacity; the other is the removability of sets of zero capacity and its relation to solutions of the fractional p-Laplace equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号