首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The steady mixed convection boundary layer flow over a vertical surface immersed in an incompressible micropolar fluid is considered in this paper. Employing suitable similarity transformations, the governing partial differential equations are transformed into ordinary differential equations, and the transformed equations are solved numerically by the Keller-box method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity, angular velocity and temperature profiles. Both cases of assisting and opposing buoyant flows are considered. It is found that dual solutions exist for the assisting flow, besides that usually reported in the literature for the opposing flow. Moreover, in contrast to the classical boundary layer theory, the separation point of the boundary layer is found to be distinct from the point of vanishing skin friction.  相似文献   

2.
The effects of suction and injection on steady laminar mixed convection boundary layer flow over a permeable horizontal flat plate in a viscous and incompressible fluid is investigated in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction and injection parameter f0, the constant exponent n of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using a finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the reduced local Nusselt number, and the velocity and temperature profiles are obtained for various values of the parameters considered. Dual solutions are found to exist for the opposing flow.  相似文献   

3.
研究了运动的粘性导电流体中可渗透收缩壁面上非稳态磁流体边界层流动,利用解析和数值方法对问题进行了研究,并考虑了壁面速度滑移的影响.提出了一个新的解析方法(DTM-BF),并将其应用于求解带有无穷远边界条件的非线性控制方程的近似解析解.对所有的解析结果和数值结果进行了对比,结果显示两者非常吻合,从而证明了DTM-BF方法的有效性.另外,对不同的参数,得到了控制方程双解和单解的存在范围.最后,分别讨论了滑移参数、非稳态参数、磁场参数、抽吸/喷注参数和速度比例参数对壁面摩擦、唯一解速度分布和双解速度分布的影响.  相似文献   

4.
The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.  相似文献   

5.
Exact solutions of the Navier-Stokes equations are derived by a Laplace-transform technique for two-dimensional, incompressible flow of an electrically conducting fluid past on infinite porous plate. It is assumed that the flow is independent of the distance parallel to the plate and that the velocity component normal to the plate is constant. A general formula is derived for the velocity distribution in terms of the given external velocity. The skin friction is obtained and some special cases are considered.  相似文献   

6.
This article discusses analytical solutions for a nonlinear problem arising in the boundary layer flow of power-law fluid over a power-law stretching surface. Using perturbation method analytical solution is presented for linear stretching surface. This solution covers large range of shear thinning and shear thickening fluids and matches excellently with the numerical solution. Furthermore, some new exact solutions are found for particular combination of m (power-law stretching index) and n (power-law fluid index). This leads to generalize the case of linear stretching to nonlinear stretching surface. The effects of fluid index n on the boundary layer thickness and the skin friction for nonlinear stretching surface is analyzed and discussed. It is observed that the boundary layer thickness and the skin friction coefficient increase as non-linear parameter n decreases. This study gives a new dimension to obtain analytical solutions asymptotically for highly nonlinear problems which to the best of our knowledge has not been examined so far.  相似文献   

7.
This paper presents a rigorous proof of existence and uniqueness of solutions to laminar boundary layer flow in power law non-Newtonian fluid. A theoretical estimate for skin friction coefficient is given, which is characterized by a power law exponent. The reliability and efficiency of the proposed estimate formula are verified by numerical results with a good agreement. The estimate formula can be successfully applied to give the value of the skin friction coefficient.  相似文献   

8.
静止流体中,在一个竖直的、不可渗透的等温表面附近,研究粘弹性边界层的流动及其热传导.得到其控制方程,并利用MackCormak技术对其进行数值求解.与先前发表的关于该问题特例的结果相比较,有着很好的一致性.对于不同的粘弹性参数值,图示了速度和温度分布、边界层厚度、Nusselt数、局部摩擦因数等典型结果.一般而言,粘弹性流体与Newton流体相比较,由于拉应力的促进作用,流体动力边界层里的速度是增加的,热边界层里的温度是下降的.粘弹性参数值越高,摩擦因数和传热系数越高.  相似文献   

9.
In the present article, radiative Sutterby nanofluid flow over a stretchable cylinder is considered. The suspended swimming microorganisms have been deliberated in the fluid analysis. Different processes such as Brownian motion, thermophoresis, Joules heating, and viscous dissipation have been inspected in the presences of stratification parameters. The solutions for flow profiles have been obtained via optimal homotopy analysis method. Impacts of different physical involved variables on non-dimensional velocity, temperature, nanofluid concentration, and concentration of density of swimming microorganisms have been debated. Coefficient of skin friction, local Nusselt number, Sherwood number, and density of motile organisms have been calculated. The results reveal that Sutterby fluid parameter enhances the skin friction and has a reverse impact on the velocity, while an increase in stratification causes a declination in the flow boundary layers. The temperature of the flow is also seen to be boosted by the increment in Brownian motion parameter. Analysis of entropy generation shows that the concentration difference parameter maximizes the entropy and minimizes the dimensionless Bejan number.  相似文献   

10.
In this paper a study is carried out to understand the transition effect of boundary layer flow: (1) due to a suddenly imposed magnetic field over a viscous flow past a stretching sheet and (2) due to sudden withdrawal of magnetic field over a viscous flow past a stretching sheet under a magnetic field. In both the cases the sheet stretches linearly along the direction of the fluid flow. Governing equations have been non-dimensionalised and the non-dimensionalised equations have been solved using the implicit finite difference method of Crank–Nicholson type. Comparison between the steady state exact solutions and the steady state computed solutions has been carried out. Graphical representation of the dimensionless horizontal velocity, vertical velocity and local skin friction profiles of the steady state and unsteady state has been presented. Computation has been carried out for various values of the magnetic parameter M. The obtained results has been interpreted and discussed.  相似文献   

11.
The effect of suction or injection on unsteady MHD flow with heat and mass transfer in a micropolar fluid near the forward stagnation point flow with thermophoresis has been investigated. The problem is reduced to a system of non-dimensional partial differential equations, which are solved numerically using the implicit finite-difference scheme. Profiles for velocity, microrotation, temperature and concentration as well as the skin friction, the rate of heat and mass transfer are determined and presented graphically for physical parameters. The results show that the suction increases the skin friction, the rate of heat and mass transfer while opposite trend is observed for the case of injection. It is also found that the effect of thermophoresis is decrease the concentration boundary layer thickness.  相似文献   

12.
根据有旋特征线理论,设计出了沿程马赫数下降规律可控的轴对称基准流场,分析了基准流场的几何参数(前缘压缩角及中心体半径)的影响规律,发现选取较小的前缘压缩角和中心体半径有利于得到性能优良的基准流场;然后在设计状态Ma=6时研究了三种典型的马赫数下降规律对这种轴对称流场性能的影响。最后考虑了粘性的影响,并进行了粘性修正探索,结果表明,采用附面层位移厚度修正方法后,基准流场的壁面压力分布和无粘情况吻合良好。   相似文献   

13.
The effect of suction/injection on the laminar mixed convectionboundary-layer flow about a vertical wall in an incompressibleviscous fluid is considered. The similarity solutions are obtainedfor some values of the suction/injection parameter as well asthe mixed convection parameter for three particular cases: uniformtemperature, uniform heat flux and stagnation flow. The resultingsystem of non-linear ordinary differential equations is solvednumerically for both assisting and opposing flow regimes usinga finite-difference scheme known as the Keller box method. Numericalresults are obtained for the skin friction coefficient and localNusselt number as well as velocity and temperature profiles.The effects of the involved parameters on the skin frictioncoefficient and the local Nusselt number characteristics arediscussed. It is found that dual solutions exist for assistingflow, besides that usually reported in the literature for opposingflow.  相似文献   

14.
This paper considers the unsteady boundary layer flow over a moving flat plate embedded in a porous medium with fractional Oldroyd-B viscoelastic fluid. The governing equations with mixed time-space fractional derivatives are solved numerically by using the finite difference method combined with an L1-algorithm. The effect of various physical parameters on the velocity and average skin friction are discussed and graphically illustrated in detail.Results show that the porosity € and fractional derivative α enhance the flow of Oldroyd-B viscoelastic fluid within porous medium, but fractional derivative βweakens the flow. Moreover, it is found that the average skin friction coefficient rises with the increase of fractional derivative β.  相似文献   

15.
The present model concentrates on three-dimensional steady incompressible flow of an Eyring-Powell nanofluid past an exponentially stretching sheet with magnetic field. The Cattaneo–Christov heat flux with convective boundary condition is accounted for. Shooting method is the instrumental for obtaining numerical solution of the transformed-converted system of the mathematical models. Behavior of the determining thermo-physical parameters on the velocity, temperature, skin friction, heat transfer rate, and finally isotherms are considered. The major relevant outcomes of the current investigation are that increment in Eyring-Powell parameter uplifts flow velocity, while that peters out the fluid temperature. Enhanced values of the mixed convection parameter weakened the skin friction coefficient while it slightly strengthened the rate of heat transfer.  相似文献   

16.
在一个由两块无限竖直平行板组成的管道中,充满着多孔的介质材料,使用Darcy模型(Brinkman模型的推广)的动量方程,连同能量方程,计算不可压缩、粘性、放/吸热流体在该管道中的不稳定自然对流,即Couette流动.流动是由于边界平板有不对称的加热,以及作加速运动所引起.选用合理的无量纲参数,对控制方程进行简化,通过Laplace变换进行解析求解,得到闭式的速度和温度分布曲线解,随后导出表面摩擦力和传热率.发现在竖直管道中的不同剖面,流体的流动及温度分布曲线随着时间而增加,且在运动平板附近更高.特别是,流体的速度和温度随着平板间距的增加而增加,但是,表面摩擦力和热传导率随着平板间距的增加而减小.  相似文献   

17.
Hypersonic rarefied gas flow over blunt bodies in the transitional flow regime (from continuum to free-molecule) is investigated. Asymptotically correct boundary conditions on the body surface are derived for the full and thin viscous shock layer models. The effect of taking into account the slip velocity and the temperature jump in the boundary condition along the surface on the extension of the limits of applicability of continuum models to high free-stream Knudsen numbers is investigated. Analytic relations are obtained, by an asymptotic method, for the heat transfer coefficient, the skin friction coefficient and the pressure as functions of the free-stream parameters and the geometry of the body in the flow field at low Reynolds number; the values of these coefficients approach their values in free-molecule flow (for unit accommodation coefficient) as the Reynolds number approaches zero. Numerical solutions of the thin viscous shock layer and full viscous shock layer equations, both with the no-slip boundary conditions and with boundary conditions taking into account the effects slip on the surface are obtained by the implicit finite-difference marching method of high accuracy of approximation. The asymptotic and numerical solutions are compared with the results of calculations by the Direct Simulation Monte Carlo method for flow over bodies of different shape and for the free-stream conditions corresponding to altitudes of 75–150 km of the trajectory of the Space Shuttle, and also with the known solutions for the free-molecule flow regine. The areas of applicability of the thin and full viscous shock layer models for calculating the pressure, skin friction and heat transfer on blunt bodies, in the hypersonic gas flow are estimated for various free-stream Knudsen numbers.  相似文献   

18.
A similarity analysis was performed to investigate the laminar free-convection boundary-layer flow in the presence of a transverse magnetic field over a vertical down-pointing cone with mixed thermal boundary conditions. Boundary layer velocity and temperature profiles were determined numerically for various values of the magnetic parameter and the Prandtl number. The results show that the magnetic field suppresses the velocity profiles and increases the skin friction. The temperature profiles were expanded with increasing values of the magnetic parameter resulting in higher surface temperatures. A transformation relating the similarity solutions of the boundary-layer velocity and temperature profiles associated with different values of the mixed thermal boundary condition parameter was obtained.  相似文献   

19.
Fractional shear stress and Cattaneo heat flux models are introduced in characterizing unsteady Marangoni convection heat transfer of viscoelastic Maxwell fluid over a flat surface. Governing equations and boundary condition are formulated firstly via the balance between the surface tension and shear stress. Numerical solutions are obtained by new developed numerical technique and some novel phenomena are found. Results shown that the fractional derivative parameters, Marangoni number and power law exponent have significant influence on characteristics velocity and temperature fields. As fractional derivative parameters increase, the temperature profiles rise remarkably and the viscoelastic effects of the fluid enhance with delayed response to surface tension, however the temperature profiles decline significantly with a thinner thickness of thermal boundary layer with the increase of Marangoni number. The average skin friction coefficient increases with the augment of Marangoni number, while the average Nusselt number decreases for larger values of power law exponent.  相似文献   

20.
This article looks at the hydrodynamic elastico-viscous fluid over a stretching surface. The equations governing the flow are reduced to ordinary differential equations, which are analytically solved by applying an efficient technique namely the homotopy analysis method (HAM). The solutions for the velocity components are computed. The numerical values of wall skin friction coefficients are also tabulated. The present HAM solution is compared with the known exact solution for the two-dimensional flow and an excellent agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号