首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigate local stability, oscillation and boundeness character of positive solutions of the difference equation $$x_{n + 1} = \alpha + \frac{{x_{n - 1} ^p }}{{x_n ^p }},n = 0,1,...$$ under specified conditions.  相似文献   

2.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

3.
We study the global asymptotic stability, global attractivity, boundedness character, and periodic nature of all positive solutions and all negative solutions of the difference equation $$x_{n + 1} = \alpha - \frac{{x_n }}{{x_{n - 1} }}, n = 0,1,...,$$ where α∈R is a real number, and the initial conditionsx?1,x 0 are arbitrary real numbers.  相似文献   

4.
Our aim in this paper is to investigate the global attractivity of the recursive sequence $$x_{n + 1} = \frac{{\alpha - \beta x_{n - k} }}{{\gamma + x_n }},$$ where α, β, γ >0 andk=1,2,… We show that the positive equilibrium point of the equation is a global attractor with a basin that depends on certain conditions posed on the coefficients.  相似文献   

5.
By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation $$\Delta (p_n (\Delta x_n )^\gamma ) + q_n f(x_{n - \sigma } ) = 0,\;\;\;\;n = 0,1,2,...,$$ when $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ . When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} < \infty }$ we present some sufficient conditions which guarantee that, every solution oscillates or converges to zero. When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ holds, our results do not require the nonlinearity to be nondecreasing and are thus applicable to new classes of equations to which most previously known results are not.  相似文献   

6.
In this paper, we consider the oscillation of the second-order neutral difference equation $$\Delta ^2 \left( {x_n - px_{n - \tau } } \right) + q_n f\left( {x_{n - \sigma _n } } \right) = 0$$ as well as the oscillatory behavior of the corresponding ordinary difference equation $$\Delta ^2 z_n + q_n f\left( {R\left( {n,\lambda } \right)z_n } \right) = 0$$ .  相似文献   

7.
In this note we show that the equation $$ - \left\{ {\left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }}} \right)^3 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }}} \right)^2 + 6i\left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }}} \right)\left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }}} \right)x_1 } \right\}u = f$$ is locally unsolvable at the origin of the coordinate system. This equation belongs to the class that generalizes the principal type to the case of weighted derivatives. The example is interesting because the weighted principal symbol is real (in this situation, equations of principal type are solvable) but the unsolvability depends on the behavior of the lower-order terms in a neighborhood of the zeros of the weighted principal symbol.  相似文献   

8.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

9.
Gordon  Yehoram  Junge  Marius 《Positivity》1997,1(1):7-43
We extend classical volume formulas for ellipsoids and zonoids to p-sums of segments $${vol}\left( {\sum\limits_{i=1}^m { \oplus_p } [ -x_i ,x_i ]} \right)^{1/n} \sim_{c_p} n^{ - \frac{1}{{p'}}} \left( {\sum\limits_{card(I) = n} {|\det (x_i)_i |^p}} \right)^{\frac{1}{{pn}}}$$ where x1,...,xm are m vectors in $\mathbb{R}^n ,\frac{1}{p} + \frac{1}{{p\prime }} = 1$ . According to the definition of Firey, the Minkowski p-sum of segments is given by $$\sum\limits_{i = 1}^m { \oplus _p [ - x_{i,} x_i ]} = \left\{ {\sum\limits_{i = 1}^m {\alpha _i } x_i \left| {\left( {\sum\limits_{i = 1}^m {|\alpha _i |^{p^\prime } } } \right)} \right.^{\frac{1}{{p^\prime }}} \leqslant 1} \right\}.$$ We describe related geometric properties of the Lewis maps associated to classical operator norms.  相似文献   

10.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

11.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

12.
The inequalities $$P_{k,l} = \frac{1}{{B(l + 1,k)}}\int\limits_0^{l/(k + l)} {x^l (1 - x)^{k - 1} dx = I_{l/(k + l)} (l + 1,k)< \frac{1}{2}}$$ and $$\Phi _{k,l,\mu } = \frac{1}{{B(k,k\mu + 1)}}\int\limits_0^1 {x^{k - 1} (1 - x)^{k\mu } I_x (l + 1,l\mu )dx< \frac{1}{2}}$$ are shown to be valid for any positive real numbersk, l, μ.  相似文献   

13.
In this paper a sufficient condition is obtained for the global asymptotic stability of the following system of difference equations $$x_{n + 1} = \frac{{x_n y_{n - 1}^b + 1}} {{x_n + y_{n - 1}^b }}, y_{n + 1} = \frac{{y_n x_{n - 1}^b + 1}} {{y_n + x_{n - 1}^b }}n = 0,1,2 \ldots$$ where the parameter b ∈ [0, ∞) and the initial values (x k , y k ) ∈ (0, ∞) (for k = ?1, 0).  相似文献   

14.
We investigate the boundedness nature of positive solutions of the difference equation $$ x_{n + 1} = max\left\{ {\frac{{A_n }} {{X_n }},\frac{{B_n }} {{X_{n - 2} }}} \right\},n = 0,1,..., $$ where {A n } n=0 and {B n } n=0 are periodic sequences of positive real numbers.  相似文献   

15.
In this paper we consider the difference equation $$x_{n + 1} = \frac{{a + bx_{n - k} - cx_{n - m} }}{{1 + g(x_{n - 1} )}},$$ wherea, b, c are nonegative real numbers,k, l, m are nonnegative integers andg(x) is a nonegative real function. The oscillatory and periodic character, the boundedness and the stability of positive solutions of the equation is investigated. The existence and nonexistence of two-period positive solutions are investigated in details. In the last section of the paper we consider a generalization of the equation.  相似文献   

16.
В РАБОтЕ ДАЕтсь ОтВЕт НА ОДИН ВОпРОс, пОстАВ лЕННыИ В. г. кРОтОВыМ. УстАНОВлЕН О, ЧтО ЕслИ Ф(х) — МОНОтОННО ВО жРАстАУЩАь ФУНкцИь,Ф (0)=0, Ф(2х)≦кФ(х), х[0, ∞), тО $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {S_k - f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\mu _k } \Phi (\lambda _k ) = \infty $$ Дль пРОИжВОльНых НЕО тРИцАтЕльНых ЧИслОВ ых пОслЕДОВАтЕльНОстЕ И {Μk} И {λk}. (жДЕсьS k ОБОжНАЧАЕт ЧАстНУУ с УММУ пОРьДкАk РьДА ФУ РьЕ ФУНкцИИf). УстАНОВлЕН О тАкжЕ, ЧтО ВО МНОгИх слУЧАьх $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {\tilde S_k - \tilde f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\frac{1}{{k\lambda _k }}} \Phi ^{ - 1} \left( {\frac{1}{{k\mu _k }}} \right)< \infty .$$   相似文献   

17.
This paper is devoted to study the interpolation of higher order by the nodes $$\left\{ { \pm 1} \right\} \cup \left\{ {\cos \frac{{(2k - 1)\pi }}{{2n}}} \right\}_{k = 1}^n ,n = 1,2,...\,.$$   相似文献   

18.
The boundedness, global attractivity, oscillatory and asymptotic periodicity of the positive solutions of the difference equation of the form $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}, n = 0,1,...$$ is investigated, where all the coefficients are nonnegative real numbers.  相似文献   

19.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

20.
On Kantorovich-Stieltjes operators   总被引:1,自引:0,他引:1  
Let ν be a finite Borel measure on[0,1]The Kantorovich-Stieltjes polynomials are de-fined byK_n ν=(n+1)N_(k,n)(nN),where N_(k,n)(x)=x~k(1-x)~(n-k)(x[0,1],k=1,2,…,n)are the basic Bernsteinpolynomials and I_(k,n):=[k/(n+1),(k+1)/(n+1)](k=0,1,…,n;nN).We prove that the maximaloperator of the sequence(K_n)is of weak type and the sequence of polynomials(K_n ν)con-verges a.e.on[0,1]to the Radon-Nikodym derivative of the absolutely continuous part of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号