首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was shown by X-ray diffraction that the aluminum crystal structure is distorted under conditions of nonequilibrium laser heating, which appears in lowering the lattice symmetry. A method for describing the observed distortions, based on the transition to a new unit cell, was proposed. It was shown that the distorted aluminum crystal structure can be described using the transition from the face-centered cubic cell to the monoclinic body-centered cell. The parameters of the aluminum unit cell after laser irradiation were determined as a = 0.2870 nm, b = 0.2860 nm, c = 0.4060 nm, and β = 90.013° (for the axes of the monoclinic body-centered lattice).  相似文献   

2.
The crystal structure and vibrational spectra of deuterated pyridinium perchlorate (d 5PyH)ClO4 (C5D5NHClO4) are studied by means of neutron diffraction in ambient conditions, X-ray diffraction at high pressures up to 3.5 GPa in the temperature range 297–420 K, and Raman spectroscopy at high pressures up to 5.7 GPa. Deuterated pyridinium perchlorate at ambient conditions has rhombohedral structure with the R3m symmetry (paraelectric phase I). Over the pressure range of 0.5–1.2 GPa, the phase II with monoclinic symmetry Cm exists. At pressure P ~ 1.2 GPa, the phase transition to monoclinic phase III with the Pm symmetry is observed at ambient temperature. The lattice parameters, unit cell volume, and frequencies of internal vibrational modes as functions of pressure are obtained for different phases of deuterated pyridinium perchlorate. The P-T phase diagram of (d 5PyH)ClO4 over the extended pressure and temperature range is discussed.  相似文献   

3.
X-Ray diffraction measurements show that on heating Mg2NiH4 in a 1 atm pressure H2 atmosphere, above ~250°C it transforms into a cubic structure, metal atoms in CaF2 arrangement, a = 6.525 Å. It is concluded that the H atoms are in tetrahedral clusters, and that the structure is only weakly ionic. This conclusion is also supported by NMR measurements. The 20°C structure of Mg2NiH4 is shown to be describable primarily as a slight monoclinic distortion of the cubic unit cell; a = 6.594 Å, b = 6.412 Å, c = 6.490 Å and β = 93.1°. However, weak small angle lines show that a longer range order exists and that the true unit cell, which we have not determined, must be very large. To what extent the cubic phase should be considered a high temperature and/or low concentration (Mg2NiH4??) phase is not resolved.  相似文献   

4.
Solid equiatomic K-Cs alloys have been investigated by X-ray diffraction throughout the temperature range 300-100K. The results indicate that a phase separation occurs below 185K accompanied by the appearance of an ordered phase in this range. This phase has a hexagonal lattice with parameters: a = 9.32(1) Å and c = 11.80(2) Å (at 170K). Evidence from our other studies [7] indicates that its composition is K2Cs. Another phase transformation in this ordered crystal is observed below 120K. There is no change of lattice symmetry but the unit cell constants shrink to the values: a = 9.11(1) Å and c = 10.86(2) Å (at 100K). The transformation can be ascribed to a rearrangement of the electronic structure of Cs.  相似文献   

5.
The crystal structure of antiferroelectric Pb2MgWO6 has been studied using neutron diffraction at high pressures to 5.4 GPa at room temperature and energy-dispersive X-ray diffraction at high pressures to 4 GPa in the temperature range 300–400 K. At normal conditions, in Pb2MgWO6, there is an antiferroelectric phase with the crystal structure described by the orthorhombic symmetry with space group Pnma. At temperature T = 313 K and normal pressure or at room temperature and pressure P ~ 0.9 GPa, the crystal under-goes a structural phase transition to the cubic phase with space group $Fm\bar 3m$ (paraelectric phase). The temperature and pressure dependences of the lattice parameters, unit cell volume, and interatomic bond lengths have been obtained, and the thermal expansion coefficients and the bulk moduli have been calculated for the antiferroelectric and paraelectric phases of Pb2MgWO6.  相似文献   

6.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

7.
The crystal structure of deoxyguanosine (5′) phosphate, disodium salt, (5′-dGMP Na2 4H2O) has been determined from three dimensional single crystal x-ray data collected by multiple film, equi-inclination, Weissenberg method using CuKa radiation. The crystal belongs to the monoclinic space groupP21 witha=16.002±0.003 Å,b=10.730±0.003 Å,c=5.575±0.005 Å andβ=101.9°. The structure was solved by symbolic addition method using the program Multan, the reliability index being 0.090. The guanine base is in the usualanti conformation about the C (1′)-N (9) bond withx CN=52.3°. The structure shows two unique conformational features not observed in any nucleotide structure reported so far. The deoxyribose moiety shows O (1′)endo puckering with respect to the best four atom plane defined by C(1′)-C(2′)-C(3′)-C(4′). The conformation about the C(4′)-C(5′) bond isgauche-trans with ø00=62.5° and øoc=174.8°. This is the first nucleotide structure where agt conformer similar to that found in the Watson-Crick double helical DNA model has been experimentally observed. These two conformational features have also direct relevance to the concept of ‘a conformationally rigid nucleotide unit’ developed by Sundaralingam. The nine membered guanine ring is essentially planar. Bases of molecules related by a ‘c’ cell translation tend to overlap, the shortest distance being 3.51 Å between the atoms N (3) and C(8). One of the sodium atoms Na(1) has an octahedral coordination with four water oxygens and O(6) and O(3′) atoms occupying the corners at distances ranging from 2.35 Å to 2.55 Å.  相似文献   

8.
The crystal structure of the paraelectric phase of rubidium hydrogen sulfate has been redetermined at room temperature to be monoclinic with a = 14.3503(14), b = 4.6187(4), c = 14.3933(14)?Å, β = 118.03(1)° (space group P21/n). Both the sulfate groups are found to be ordered, unlike in previous reports. The crystal structure of the ferroelectric phase at 200?K belongs to the noncentrosymmetric space group Pn with a = 14.2667(12), b = 4.5878(4), c = 14.2924(12)?Å, β = 118.01(1)°, with distorted sulfate groups. The change in the Rb coordination is discussed in terms of bond-valence-sum calculations. Variable-temperature powder X-ray diffraction patterns at temperatures above 393?K indicate a possible reduction in symmetry, suggesting a phase transition.  相似文献   

9.
The structural state of a bulk Zn0.95Fe0.05Se cubic crystal grown by the chemical transport method from the gas phase has been investigated using thermal neutron diffraction at room temperature. It has been found that the measured neutron diffraction patterns of the crystal, in addition to structural Bragg peaks, contain a clearly identified system of superstructure reflections with the wave vector k = (1/3 1/3 1/3)2π/a (where a is the parameter of the cubic unit cell), which is interpreted as a clear evidence of the incipient transition state preceding the concentration phase transformation fcc ? hcp. It has been shown that the resulting structural state includes an inhomogeneous microstrain field with the possible appearance of long-wavelength modulations based on the initial sphalerite structure.  相似文献   

10.
The crystal structure and magnetic properties of a system of Pr0.5Sr0.5Co1 ? x Mn x O3 solid solutions were studied by neutron diffraction and magnetization measurements. It is shown that, at a low manganese concentration, the structure can be described by the I/2a monoclinic space group; with increasing substitution level x the structure becomes orthorhombic. For x > 0.9 the crystal structure is tetragonal at high temperatures and the symmetry is lowered to orthorhombic with lowering the temperature. The substitution of cobalt for manganese leads to the destruction of long-range ferromagnetic order near x ?? 0.25. A transition from the high-temperature ferromagnetic phase to the A-type low-temperature antiferromagnetic phase is observed at x ?? 0.93 in the temperature range 110?C160 K.  相似文献   

11.
BaBi0.7Nb0.3O3, an ordered perovskite, crystallizes in a centrosymmetric rhombohedral structure with the space group R3¯. The refined cell parameters obtained from synchrotron powder X-ray diffraction data for the rhombohedral phase at ambient pressure are a=6.109 (2) Å and α=60.3 (1)°. The pressure-dependent synchrotron powder X-ray diffraction studies show a phase transition around 8.44±1 GPa, where it transforms from rhombohedral structure to a monoclinic structure. The lattice parameters obtained for the monoclinic phase at a pressure of 15±1 GPa are a=5.91 (2) Å, b=6.25 (3) Å and c=8.22 (1) Å with monoclinic angle, β=88 (1)°.  相似文献   

12.
Temperature dependences of the dielectric constants ?i and of the birefringences Δni for light propagation directions along all the three crystallographic axes (i = a, b, c) have been measured between 5 and 350 K. The optical measurements clearly reveal a new phase transition at TL = 75 K, below which the crystal structure is transformed from the ferroelectric Pna21 phase into an unknown low temperature phase, possibly the monoclinic space group P1121. Small peaks in the dielectric constants ?a and ?b have been observed at this transition temperature.  相似文献   

13.
β-FeOOH nanoparticles have been prepared in a microemulsion system with nonionic surfactant polyoxyethylene(4)nonylphenylether CH3(CH2)8C6H4O(CH2OCH2)4H. The powder X-ray diffraction, infrared spectra, and transmission electron microscopic images indicate that the products are 20–30 nm length nanorods with a crystal structure belonging to monoclinic β-FeOOH and lattice parameters of a=0.9981, b=0.2948, c=1.0485 nm and β=92.26°. The size and shapes of β-FeOOH nanoparticles can be manipulated by the surfactant. The modified β-FeOOH nanoparticles are paramagnetic at room temperature and may be antiferromagnetic or weakly ferrimagnetic at lower temperatures. The 57Fe Mössbauer spectra show that the magnetic structure transforms below 150 K and two kinds of Fe–O octahedra exist in the lattice of the modified β-FeOOH nanoparticles. The numbers of each kind of Fe–O octahedra are not the same at room temperature or at low temperatures.  相似文献   

14.
A powder sample of the monoclinic, weak ferromagnet CuF2 was investigated by neutron diffraction. Using the profile method, the crystal structure was refined and the spin configuration determined. The layer type structure with planar quadratic fluorine coordination of Cu2+ (3d9) and the magnetic structure are remarkably similar to those of AgF2. The spin configuration is however different from the magnetic structures of other 3d-fluorides; the magnetic unit cell is doubled with respect to the chemical cell (am = 2a, P21/c). The ordered magnetic saturation moment corresponds to quenched orbital momentum.  相似文献   

15.
Using high-resolution time-of-flight neutron powder diffraction, the crystal structure of BaPbO3 has been reinvestigated at room temperature and 4.2 K. By comparing different structural models, i.e. the orthorhombic Imma and the monoclinic I2/m, it is concluded that the former one describes correctly the structure of BaPbO3, and no ImmaI2/m phase transition exists in the temperature range investigated. The apparent monoclinic distortion is likely due to the existence of twins that introduce the micro strain resulting in anisotropic line broadening of the observed profiles.  相似文献   

16.
The crystal and magnetic stucture of TbMn2Ge2 are determined by neutron diffraction using a powder sample. The crystal structure of this compound is of the ThCr2Si2 type with small mixing of Mn and Ge atoms between 4(d) and 4(e) positions. At RT the antiferromagnetic collinear structure consist of a+?+? sequence of ferromagnetic layers of Mn atoms with the magnetic moment parallel to the c-axis. At 85 K, the ferromagnetic ordering within the Tb sublattice is observed. The magnetic moment (~7.7 μB) is parallel to the c-axis. At 4.2 K additional reflections are observed, which correspond to antiferromagnetic components in a monoclinic unit cell.  相似文献   

17.
Na3Bi(PO4)2 exhibits several phase transitions at about 575, 820 and 905°C. The structure was determined at ambient temperature (α-form) and above the first transition (β-form). The α-form cell is monoclinic with a = 19.86(1), b = 5.353(6), c = 13.96(3) Å, β = 110.64(7)°, Z = 8, space group P21/ c ; the structure was solved from 3769 independent reflections to an R value, calculated on intensities, of 0.069. The β-form cell is orthorhombic with a = 18.71(3), b = 7.18(2), c = 5.429(7) Å, Z = 4, space group Pnam; the structure was solved to an R value, calculated on structure factors, of 0.055 using intensities of 858 unique reflections measured on a single crystal at 650°C. Both structures are related to that of glaserite. At high temperature, one of the PO4 tetrahedra is statistically disordered over two positions related by the m-mirror. Below the transition, ordering of this ion leads to a unit cell of lower symmetry. At the transition, two individuals grow on the two sides of the m-mirror which disappears; thus, at ambient temperature, the crystals are systematically twinned. Above the second transition, the unit cell is hexagonal.  相似文献   

18.
The temperature variations of the interplanar spacings a(T) and c(T) in the crystal lattice of dysprosium tetraboride have been studied using X-ray diffraction in the temperature range 5?C300 K. Anomalous variations of a(T) and c(T) in the temperature range of magnetic transformations, anisotropy of the thermal expansion of DyB4, and the monoclinic distortion of the crystal structure at low temperatures have been revealed. The magnitudes of the spontaneous magnetostriction, the thermal expansion coefficients ??a and ??c, and the exchange integrals Y a and Y c have been determined.  相似文献   

19.
The crystal structural, magnetic and electrical transport properties of double perovskite CeKFeMoO6 have been investigated. The crystal structure of the compound is assigned to the monoclinic system with space group P21/n and its lattice parameters are a=0.55345(3) nm, b=0.56068(2) nm, c=0.78390(1) nm, β=89.874(2). The divergence between zero-field-cooling and field-cooling M-T curves demonstrates the anisotropic behavior. The Curie temperature measured from Cp-T curve is about 340 K. Isothermal magnetization curve shows that the saturation and spontaneous magnetization are 1.90 and 1.43 μB/f.u. at 300 K, respectively. The electrical behavior of the sample shows a semiconductor. The electrical transport behavior can be described by variable range hopping model. Large magnetoresistance, −0.88 and −0.18, can be observed under low magnetic field, 0.5 T, at low and room temperature, respectively.  相似文献   

20.
A new inorganic-organic hybrid material produced from 2,6-dimethylanilinium cations and tin halide (SnCl6)2? has been synthesized and structurally determined by X-ray diffraction method. The title compound crystallizes in the monoclinic system, space group C2/m with a = 19.8772(4), b = 6.9879(1), c = 8.3001(2) Å, β = 98.487(2)° and V = 1140.26(4) Å3. The crystal structure is built up of sheets of (SnCl6)2? octahedral anions and 2,6-xylidinium cations. The optical band gap was calculated and found to be 4.11 eV. At high temperature this compound exhibits a structural phase transition at 338 K. This has been characterized by differential scanning calorimetric and dielectric studies. Measurements of AC conductivity as a function of frequency at different temperatures indicated the hopping conduction mechanism. The bioassay results showed that the structure exhibits significant antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号