首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Russian Journal of Applied Chemistry - The possibility of using a carbonate-containing technogenic waste as reagent for treatment of aqueous solutions to remove lead(II) ions is demonstrated. The...  相似文献   

2.
Mg/Al layered double hydroxides (LDH) containing KI were synthesized and tested as basic heterogeneous catalysts for transesterification of sunflower oil, in order to obtain biodiesel. The process was carried out using reflux with 15:1 molar ratio of methanol to sunflower oil, and catalyst concentration of 2 mass%. The characterization of sunflower oil and biodiesel was accomplished according to ASTM and EN standard methods. The gas chromatographic and TG/DTG profiles were evaluated, and the results of yield and conversions were compared. The gas chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, specially using LDH catalysts modified with KI and molar ratio Mg/Al = 1, with conversions higher than 99 % indicating the strong influence of the chemical composition and controlled basicity, due to the presence of potassium in the structure of the catalyst.  相似文献   

3.
Following different preparation routes, fenbufen has been intercalated in the interlayer space of layered double hydroxides with Mg2+ and Al3+ or Mg2+, Al3+ and Fe3+ in the layers. Well crystallized samples were obtained in most of the cases (intercalation was not observed by reconstruction of the MgAlFe matrix), with layer heights ranging between 16.1 and 18.8 Å. The presence of the LDH increases the solubility of fenbufen, especially when used as a matrix. The dissolution rate of the drug decreases when the drug is intercalated, and is even lower in those systems containing iron; release takes place through ionic exchange with phosphate anions from the solution. Preparation of microspheres with Eudragit® S 100 leads to solids with an homogeneous, smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH lower than 7.  相似文献   

4.
A uranyl triazole (UO(2))(2)[UO(4)(trz)(2)](OH)(2) (1) (trz = 1,2,4-triazole) was prepared using a mild solvothermal reaction of uranyl acetate with 1,2,4-triazole. Single-crystal X-ray diffraction analysis of 1 revealed it contains sheets of uranium-oxygen polyhedra and that one of the U(VI) cations is in an unusual coordination polyhedron that is intermediate between a tetraoxido core and a uranyl ion. This U(VI) cation also forms cation-cation interactions (CCIs). Infrared, Raman, and XPS spectra are provided, together with a thermogravimetric analysis that demonstrates breakdown of the compound above 300 °C. The UV-vis-NIR spectrum of 1 is compared to those of another compound that has a range of U(VI) coordination enviromments.  相似文献   

5.
6.
Journal of Solid State Electrochemistry - Single-walled carbon nanotube (SWCNT) wrapped GeO2/ZnWO4 nanocomposite was prepared by single-step solvothermal method. In this work, GeO2/ZnWO4...  相似文献   

7.
In the present work we report on the electrochemical formation towards layers of multiscale MgO nanowhiskers by a two step approach. First, metallic magnesium was anodized under “high-voltage”-conditions in chloride containing ethanol/water mixtures. This results within seconds in the formation of dense areas of magnesium hydroxide nanowhiskers on the surface. The individual as-grown whiskers have a needle tip shape, and a length depending on the growth time of up to 20 μm. The whiskers can be transformed to MgO by a thermal annealing process. To gain more insight into this very rapid growth process, the paper describes the influences of the key parameters of the anodization (pH, ion-concentration, electrolyte composition) and the effect of the thermal treatment on the morphology. All steps were characterized using SEM, EDX, XRD and XPS measurements.  相似文献   

8.
The synthesis and structural characterization of a mixed-valent uranium(V/VI) oxo-imido complex are reported. Reaction of the uranyl chloride complex [K(18-crown-6)](2)[UO(2)Cl(4)] (1) with the triamidoamine ligand Li(3)[N(CH(2)CH(2)NSiBu(t)Me(2))(3)] yields oxo-imido [K(18-crown-6)(Et(2)O)][UO(mu(2)-NuCH(2)CH(2)N(CH(2)CH(2)NSiBu(t)Me(2))(2))](2) (2) as the major isolated uranium product in moderate yield. The reaction that forms 2 involves activation of both the triamidoamine ligand and the uranyl dioxo unit of 1. An X-ray crystal structure determination of 2 reveals a dimeric complex in which the coordination geometry at each uranium center is that of a capped trigonal bipyramid. The multidentate triamidoamine ligand coordinates to uranium through the capping amine and two of the three pendant amido ligands, while the third pendant amido donor has been activated to generate a bridging imido ligand by loss of the silyl substituent. One of the uranyl oxo groups is retained as a terminal ligand to complete the coordination sphere for each uranium center. The oxo and imido nitrogen may be regarded as the axial ligands of the trigonal bipyramid, while the two amido ligands and the other imido donor occupy equatorial coordination sites. The central amine of the tripodal set serves as the capping ligand. Distortion of the axial O-U-N angle from 180 degrees emanates from the proximity of the capping amine and the bridging interaction to the other uranium center. The structure and bonding in 2 are assessed in the context of metal-ligand multiple bonding in high-valent actinide complexes. The possibility of valence averaging [5.5/5.5 vs 5.0/6.0] via delocalization or rapid intramolecular electron-transfer dynamics of the unpaired electron is also discussed in the context of crystallographic, spectroscopic (NMR, IR, Raman, and EPR), and electrochemical data. Crystal data for 2: triclinic space group P1 macro, a = 12.1144(6) A, b = 12.6084(6) A, c = 14.5072(7) A, alpha = 101.374(1) degrees, beta = 103.757(1) degrees, gamma = 109.340(1) degrees, z = 1, R1 = 0.0523, wR2 = 0.1359.  相似文献   

9.
In this work, a synthesis route of (Na,K)Mg/Al spinel-type compounds, which combines hydrothermal synthesis at low temperatures (<200 °C) and solid-state sintering (>800 °C) methods, is presented. It was examined that NaOH and KOH additives induce the reaction between initial Mg and Al components and the formation of hydrotalcite during hydrothermal treatment. It should be noted that after 1 h of calcination of synthetic precursors at 850 °C spinel-type compounds are formed only in the samples with alkali addition. Meanwhile in the pure system only traces of the mentioned compounds are observed at 900 °C. Moreover, the increase in solid-state sintering temperature and duration lead to the higher-crystallinity (Na,K)MgAl2O4 spinel-type compounds. It should be noted that textural properties of formed (Na,K)Mg/Al spinel-type compounds depend on the chemical composition of precursors. The synthetic and calcined products are characterised by XRD, STA, FT-IR analyses and BET method.  相似文献   

10.
In this contribution, a novel high-temperature CO2 adsorbent consisting of Mg-Al layered double hydroxide(LDH) and graphene oxide(GO)nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO2 adsorption capacity and the multicycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO2 capture capacity of the adsorbent could be further increased by doping with 15 wt%K2CO3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.  相似文献   

11.
A Raman spectrum consistent with that expected from an Al2OF6(2-) ion was observed when Na2O was dissolved in a eutectic LiF/NaF/KF (FLINAK) melt at 500 degrees C, which contained a low concentration of either AlF3 or Na3AlF6. Furthermore, it was possible to trap the Al2OF6(2-) ion in the frozen solid and to measure its Raman and IR spectra at 25 degrees C. A number of bands have been detected; among those, the two most characteristic bands of the Al2OF6(2-) ion at 494 (polarized) and 265 cm-1 in the FLINAK melt at 500 degrees C, and those at 509 and 268 (Raman) and approximately 780 to approximately 900 (IR) cm-1 for the compound matrix isolated in solid FLINAK at 25 degrees C. In the absence of added oxide, the dissolved aluminum fluoride was in the form of the octahedral AlF6(3-) ion, which has characteristic Raman bands at 542 and 325 cm-1 in the FLINAK melt at 500 degrees C. Whereas alumina, Al2O3, was found to be essentially insoluble in FLINAK melts, it was possible to dissolve sufficient amounts of Na2O to convert most of the AlF6(3-) to the oxyfluoroaluminate, Al2OF6(2-). These solutions appeared to be metastable with respect to formation of insoluble alumina at higher temperatures. The present results can be compared to previous measurements on alumina dissolved in pure molten cryolite at much higher temperatures, where alumina solubility is low and broad bands due to oxide species are difficult to detect due to overlap with bands from AlF6(3-) and AlF4-.  相似文献   

12.
The layered double hydroxide of Mg with Al decomposes below 600 degrees C with the loss of nearly 48% mass, resulting in the formation of an oxide residue having the rock salt structure and nanoparticulate morphology. However, this product reconstructs back into the parent LDH, owing to its compositional and morphological metastability. The oxide can be kinetically stabilized within an amorphous phosphate network built up through an ex situ reaction with a suitable phosphate source such as (NH4)H2PO4. This oxide transforms into a thermodynamically more stable phase with a spinel structure on soaking in an aqueous medium. The oxide residue has a nanoparticulate morphology as revealed by the Scherrer broadening of the Bragg reflections as well as by electron microscopy. This work shows that the hydroxide reconstruction reaction and spinel formation are competing reactions. Suppression of the former catalyzes spinel formation as the excess free energy of the metastable oxide residue is unlocked to promote the diffusion of Mg2+ ions from octahedral to tetrahedral sites, which is the essential precondition to the formation of a normal spinel. This reaction taking place as it does at ambient temperature and in solution helps in the retention of a nanostructured morphology for the spinel. Another way of stabilizing the oxide is by incorporating the thermally stable borate anion into the LDH. This paves the way for an in situ reaction between the cations of the host LDH and the borate guest. The in situ reaction directly leads to the formation of an oxide with a spinel structure.  相似文献   

13.
14.
A new lead uranyl divanadate, PbUO2(V2O7), has been synthesized by high temperature solid-state reaction and its crystal structure was solved by direct methods using single-crystal X-ray diffraction data. It crystallizes in the monoclinic system with space group P21/n and following cell parameters: a=6.9212(9) Å, b=9.6523(13) Å, c=11.7881(16) Å, β=91.74(1)°, V=787.01(2) Å3, Z=4, ρmes=5.82(3), ρcal=5.83(1) g/cm3. A full-matrix least-squares refinement on the basis of F2 yielded R1=0.029 and wR2=0.064 for 2136 independent reflections with I>2σ(I) collected with a Bruker AXS diffractometer (MoKα radiation). The crystal structure of PbUO2(V2O7) consists of a tri-dimensional framework resulting from the association of V2O7 divanadate units formed by two VO4 tetrahedra sharing corner and UO7 uranyl pentagonal bipyramids and creating one-dimensional elliptic channels occupied by the Pb2+ ions. In PbUO2(V2O7), infinite ribbons of four pentagons wide are formed which can be deduced from the sheets with Uranophane type anion-topology that occurs, for example, in the uranyl divanadate (UO2)2(V2O7), by replacement of half-U atoms of the edge-shared UO7 pentagonal bipyramids by Pb atoms. Infrared spectroscopy was investigated at room temperature in the frequency range 400-4000 cm−1, showing some characteristic bands of uranyl ion and of VO4 tetrahedra.  相似文献   

15.
Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Methacrylic acid (MA), a functionalization agent that can chemically link TiO2 nanomaterials (n-TiO2) and polymer matrix, was used to modify the surface of n-TiO2 using a Ti-carboxylic coordination bond. Then, the double bond in MA was copolymerized with methyl methacrylate (MMA) to form a n-TiO2-PMMA nanocomposite. The resulting n-TiO2-PMMA nanocomposite materials were characterized by using thermal analysis, electron microscopy, and elemental analysis. The dynamic mechanical properties (Young's and shear modulus) were measured using an ultrasonic pulse technique. The electron microscopy results showed a good distribution of the nanofillers in the polymer matrix. The glass transition temperature, thermal degradation temperature, and dynamic elastic moduli of the nanocomposites were shown to increase with an increase in the weight percentage of nanofibers in the composite. The resulting nanocomposites exhibited improved elastic properties and have potential application in dental composites and bone cements.  相似文献   

16.
In this contribution, a novel high-temperature CO2 adsorbent consisting of Mg-Al layered double hydroxide(LDH) and graphene oxide(GO)nanosheets was prepared and evaluated. The nanocomposite-type adsorbent was synthesized based on the electrostatically driven self-assembly between positively charged Mg-Al LDH single sheet and negatively charged GO monolayer. The characteristics of this novel adsorbent were investigated using XRD, FE-SEM, HRTEM, FT-IR, BET and TGA. The results showed that both the CO2 adsorption capacity and the multicycle stability of LDH were increased with the addition of GO owing to the enhanced particle dispersion and stabilization. In particular, the absolute CO2 capture capacity of LDH was increased by more than twice by adding 6.54 wt% GO as support. GO appeared to be especially effective for supporting LDH sheets. Moreover, the CO2 capture capacity of the adsorbent could be further increased by doping with 15 wt%K2CO3. This work demonstrated a new approach for the preparation of LDH-based hybrid-type adsorbents for CO2 capture.  相似文献   

17.
The compound tetraphenylphosphonium tetrachlorooxo-S,S-diphenylsulfiliminatouranium, [Ph4P][UOCl4(NSPh2)], has been prepared in high yield from [Ph4P][UOCl5] and [Ph2S=NSiMe3]. An X-ray structure of this compound shows that the uranium atom has a pseudooctahedral geometry with oxygen and nitrogen atoms in trans positions. The structure of the analogous phosphoriminato complex [Ph4P][UOCl4(NPPh3)] has been determined for comparison. Derivatization of the sulfide group shows that only a limited range of functionalization confers stability toward reduction. The emission spectrum of the first electronic excited state reveals a greatly reduced energy compared with that of the uranyl ion. This red shift in the transition is consistent with the weakening of the U-N bond relative to the U-O bond.  相似文献   

18.
With recent literature demonstrating enhancement of the thermoelectric performance of nanoscale materials relative to their corresponding bulk materials, methods to synthesize low-dimensional nanomaterials in large scale at low cost are needed. We demonstrate a method for preparing nanostructured dimagnesium silicide (Mg2Si) thermoelectric materials that are nanocomposites with MgO by the reduction of diatomaceous earth (diatoms) using a gas-displacement solid state reaction with magnesium vapor. The resulting semiconducting Mg2Si preserves the general morphology of the original diatoms and their nanosized grains at least down to the size of 30 nm. This reaction represents a possible method for the production of large quantities of low-cost nanoscale thermoelectric materials with potential for enhanced thermoelectric performance.  相似文献   

19.
20.
We reported γ‐alumina supported molybdenum phosphide (MoP) catalysts as a novel catalyst for sulfur‐resistant methanation reaction. The precursors of the catalyst were prepared by impregnation method and the effect of reduction temperatures (550 °C, 600 °C, 650 °C) of the precursors for sulfur‐resistant methanation was examined. The results indicated catalyst obtained by lower reduction temperature delivered better sulfur‐resistant methanation performance. Meanwhile, the influence of H2/CO ratios and H2S content was also investigated. The results indicated that high H2/CO ratio and low H2S content was favorable for methanation of MoP catalysts. The catalysts were characterized by N2 adsorption–desorption, XRD, XPS and TEM. The results confirmed that the MoP phase was formed on all the catalysts and the physicochemical properties of the samples influenced the performance for sulfur‐resistant methanation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号