首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of lithium ion coordination with the bis(oxalato)borate (BOB-) [B(C2O4)2]- anion in DMSO, PEG, PPG, and d-PPG has been studied in detail by IR and Raman spectroscopy. Ab initio calculations were performed to allow a consistent analysis of the experimental data. The main features observed in the IR and Raman spectra correspond to the presence of "free", un-coordinated, BOB- anions. Only with use of d-PPG as solvent a small amount of Li+...BOB- ion pairs were detected. The Raman spectra and the calculations together indicate that Li+ coordinates bidentately with two end-oxygen atoms of the BOB- anion. The identification of ion pairs can be used to reveal limitations of LiBOB based electrolytes. The results for LiBOB are compared with literature on other Li salts.  相似文献   

2.
How to exert the high-voltage performance of LiNi0.5Mn1.5O4 and break through the bottleneck effect of corresponding electrolyte have become key points in advanced lithium-ion battery. Lithium bis(oxalato) borate (LiBOB) and sulfolane (SL) are chosen as additives to investigate their effects on the electrochemical performance of lithium-ion battery with LiNi0.5Mn1.5O4 cathode. The quantum chemistry calculation theory shows that oxidation potential of SL–BOB is dramatically increased, consistent with the experimental result in CV measurement. Meanwhile, results of CV and charge–discharge cycling indicate that LiBOB and SL would be involved in the initial oxidation reaction to form an effective solid electrolyte interface film on surfaces of the cathode electrode thus enhance the cycling performance of LiNi0.5Mn1.5O4/Li cells. Electrochemical impedance spectroscopy data proves that SL is beneficial to resistance decrease. All these data will become important corroborations that the combined electrolyte LiBOB and SL have good oxidation resistances.  相似文献   

3.
Lithium ion conducting polymer electrolytes based on polyacrylonitrile (PAN) and lithium bis(oxalato)borate (LiBOB) have been prepared and characterized. The polymer electrolytes having PAN:LiBOB weight ratios of 90:10, 80:20, 70:30, 60:40 and 50:50 were prepared using dimethylformamide as solvent. The electrolyte having the composition 50 wt.% PAN–50 wt.% LiBOB shows the highest room temperature conductivity of 2.55 × 10?5 S cm?1. This sample demonstrated a lithium ion transference number of 0.25 and a breakdown voltage of 1.6 V. The highest conducting electrolyte was then sandwiched between two symmetrical carbon electrodes to fabricate an electrical double layer capacitor (EDLC). The EDLCs were characterized using impedance measurement, cyclic voltammetry (CV) and galvanostatic charge–discharge tests. The capacitance obtained from impedance measurement is about 35 F g?1 at frequency 10 mHz. From CV, the capacitance is calculated to be 24 F g?1 at 10 mV s?1 scan rate. The discharge capacitance of the EDLCs is determined in the range from 22 to 10 F g?1 at corresponding discharge currents from 0.2 to 1.5 mA, respectively. This also corresponds to a specific energy from 3.01 to 1.47 W h kg?1 and a specific power from 380 to 474 W kg?1, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Larsson W  Panitz JC  Cedergren A 《Talanta》2006,69(1):276-280
A non-alcoholic coulometric reagent based on N-methylformamide (NMF) was shown to eliminate the severe interference effect caused by the alcohol component of the conventional Karl Fischer (KF) reagent on the battery electrolyte lithium bis(oxalato)borate (LiBOB). For sample amounts up to 240 μg of water, the stoichiometry of the KF reaction deviated only slightly from the ideal 1:1 ratio for the best reagent composition. Both solid and dissolved (in acetonitrile, tetrahydrofuran (THF), and ethylene carbonate/ethyl methyl carbonate) LiBOB were titrated successfully using a Metrohm 756 KF Coulometer with a diaphragm cell. The detection limit was estimated to be 0.5-1 μg of water using 100 ml of reagent in this system.  相似文献   

5.
Journal of Solid State Electrochemistry - Lithium bis(fluorosulfony)imide (LiFSI) is a promising alternative lithium salt to replace lithium hexafluorophosphate (LiPF6) due to its high conductivity...  相似文献   

6.
Previously unreported bis(oxalato)borate (BOB) ionic liquids (ILs) containing imidazolium, pyridinium, and pyrrolidinium cations were prepared from the corresponding halide salts by reaction with sodium bis(oxalato)borate (NaBOB), and their properties are reported. Pulse radiolysis experiments revealed that the BOB anion scavenges solvated electrons with rate constants of 3×108 M−1 s−1 in the ionic liquid C4mpyrr NTf2 and 2.8×107 M−1 s−1 in water. This reactivity indicates that BOB ILs may be too sensitive to be used as neat solvents for nuclear separations processes in high radiation fields but may still be useful for preventing criticality while processing relatively “cold” fissile actinides.  相似文献   

7.
Solid electrolytes play a vital role in solid-state Li secondary batteries,which are promising high-energy storage devices for new-generation electric vehicles.Nevertheless,obtaining a suitable solid electrolyte by a simple and residue-free preparation process,resulting in a stable interface between electrolyte and electrode,is still a great challenge for practical applications.Herein,we report a self-crosslinked polymer electrolyte(SCPE)for high-performance lithium batteries,prepared by a one-step method based on 3-methoxysilyl-terminated polypropylene glycol(SPPG,a liquid oligomer).It is worth noting that lithium bis(oxalate)borate(Li BOB)can react with SPPG to form a crosslinked structure via a curing reaction.This self-formed polymer electrolyte exhibits excellent properties,including high roomtemperature ionic conductivity(2.6×10-4 S cm-1),wide electrochemical window(4.7 V),and high Li ion transference number(0.65).The excellent cycling stability(500 cycles,83%)further highlights the improved interfacial stability after the in situ formation of SCPE on the electrode surface.Moreover,this self-formation strategy enhances the safety of the battery under mechanical deformation.Therefore,the present self-crosslinked polymer electrolyte shows great potential for applications in high-performance lithium batteries.  相似文献   

8.
9.
《Solid State Sciences》2007,9(11):1069-1073
A new type of lithium difluoro(oxalate)borate salt was synthesized by solid state reaction method and has been incorporated into polyvinyledenefluoride–hexafluoropropylene (PVdF–HFP) skeleton. Ethylene carbonate (EC) and diethyl carbonate (DEC) mixture was used as plasticizing agent. Sb2O3 nanoparticle was used as the filler in the polymer host to prepare the nanocomposite polymer electrolytes (NCPE) for lithium ion batteries by solution casting technique. All the membranes were subjected to a.c. impedance, mechanical stability and morphological analysis. Among them 5 wt% Sb2O3 having NCPE exhibited enhanced conductivity of 0.298 mS cm−1 at ambient temperature and Young's modulus increased from 1.32 to 2.31 MPa after the addition of Sb2O3. The conductivity enhancement is explained in terms of Vogel–Tamman–Fulcher (VTF) theory.  相似文献   

10.
Tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte is here studied. Electrochemical impedance spectroscopy (EIS) measurements demonstrate that the electrolyte has conductivity higher than 10− 3 S cm− 1 at room temperature and about 10− 2 S cm− 1 at 60 °C, while thermogravimetry indicates a stability extending up to 180 °C. Sweep voltammetry of the electrolyte shows anodic stability extending over 4.6 V vs. Li and cathodic peak at about 1.5 V vs. Li/Li+, caused by a decomposition of LiBOB salt, and following prevented by using a pre-treated Sn-C anode. Furthermore, LiFePO4 electrode is successfully used as cathode in a lithium cell using the TEGDME-LiBOB electrolyte. The promising electrochemical results, the low cost and the very high safety level candidate the electrolyte here reported as a valid alternative to the conventional electrolyte based on fluorinated salts presently used in the lithium ion battery field.  相似文献   

11.
双草酸硼酸锂(LiBOB)是一种新型锂盐,和商业化的LiPF_66相比具有一定优势,在锂离子电池应用上受到许多学者的关注.本文介绍了LiBOB的热稳定性、分解产物无毒和保护铝箔集流体等基本性质,对LiBOB的固相和微波两种合成方法及其在不同的有机溶剂中的溶解性、电导率、高低温性能等方面进行了论述,分析了LiBOB与正极材料搭配性能和在石墨负极上的成膜性能,并对其发展方向进行了展望.  相似文献   

12.
Conductivities (??) of PC (propylene carbonate)/EMC (ethyl methyl carbon ate)/DMC (dimethyl carbonate) and EC (ethylene carbonate)/EMC/DMC solutions of lithium bis(oxalate)borate (LiBOB) were experimentally determined at a temperature (??) range from ?40.0 to 60.0°C. Under such experimental conditions, the effect factors on the ??, such as the salt molar concentrations (m), and the volume ratio of solvent compositions, were also investigated. The results showed that, in wide ?? range, the higher ?? were obtained with 0.7 mol L?1 LiBOB in PC/EMC/DMC and 0.6 mol L?1 LiBOB in EC/EMC/DMC and with a volume ratio of 1: 1: 1 and 1: 1: 2, respectively. When used in LiFePO4/Li cells, compared to the cell with the electrolyte system of 1.0 mol L?1 LiPF6-EC/EMC/DMC (1: 1: 1), LiBOB cells with PC/EMC/DMC and EC/EMC/DMC electrolyte systems with the same volume mixture solvent compositions exhibit several advantages, such as more stable cycle performance, higher mean voltage, excellent large current discharge capability, more capacity retention at high temperature, and more stable storage performance, etc. This study not only shows that LiBOB is a very promising alternative salt for lithium ion chemistry, but also provides appropriate solvent to improve LiBOB??s electrochemical performance.  相似文献   

13.
14.
Tris(oxalato)phosphorus acid and its lithium salt   总被引:1,自引:0,他引:1  
The conversion of three equivalents of anhydrous oxalic acid with phosphorus pentachloride yields tris(oxalato)phosphorus acid 1, which crystallizes from diethyl ether solutions as protonated diethyl ether complex [(Et2O)2H](+)[P(C2O3)3)]-. The superacidic compound can be used as catalyst for Friedel-Crafts-type reactions. Upon neutralization with lithium hydride, the lithium salt Li[P(C2O3)3] 2 is obtained, which is highly soluble in aprotic solvents and which exhibits a wide voltage window. Thus, the lithium compound is a promising candidate as electrolyte for high performance non-aqueous batteries.  相似文献   

15.
A mixed metal carboxylate, cadmium(II)bis(oxalato)cobaltate(II)pentahydrate, has been synthesized and characterized by elemental analysis, IR spectral, reflectance and X-ray powder diffraction studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound decomposed to CdCoO3 at 370°C through the formation of an anhydrous compound at ~194°C. Finally, CdCoO2 is generated at 1000°C. DSC study in nitrogen up to 550°C showed the formation of a mixture of CdO and Co3O4 as end products. The kinetic parameters have been evaluated for the dehydration and decomposition steps using four non-mechanistic equations, i.e., Freeman and Carroll, Coats and Redfern, Flynn and Wall, MacCallum and Tanner equations. Using seven mechanistic equations, the rate controlling processes of the dehydration and decomposition mechanism are also inferred. The kinetic parameters, DH and DS obtained from DSC are discussed. IR and X-ray powder diffraction studies identified some of the decomposition products. A tentative mechanism for the decomposition in air is proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Lithium difluoro(oxalato)borate was investigated as a functional additive for non-aqueous electrolytes for lithium-ion batteries. It was found that the addition of small amount of lithium difluoro(oxalato)borate to the LiFP6-based electrolyte can significantly improve both the capacity retention and the power retention of lithium-ion cells. Unlike other additives, lithium difluoro(oxalato)borate only slightly increased the interfacial impedance of the cells, resulting in good initial power capability. Therefore, lithium difluoro(oxalato)borate is a promising additive for high-performance lithium-ion batteries for power applications, such as hybrid electrical vehicles.  相似文献   

17.
Summary A mixed metal oxalate, manganese(II)bis(oxalato)nickelate(II)tetrahydrate, has been synthesized and characterized by elemental analysis, IR spectral and X-ray powder diffraction (XRD) studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound decomposed mainly to Mn2O3, MnO2 and NiO at ca.1000°C, via. the formation of several intermediates. DSC study in nitrogen upto 500°C showed the endothermic decomposition. The tentative mechanism for the thermal decomposition in air is proposed.  相似文献   

18.
19.
The electrochemical behavior of electric double layer capacitors (EDLCs) with tetramethylammonium bis(oxalato)borate electrolyte and electrodes based on various activated carbons (ACs) was studied. Tetraalkylammonium bis(oxalate)borate salts were synthesized by means of microwave (MW) irradiation. The specific conductivities of salt solutions were determined. It was shown that the efficiency of electric double layer capacitors increases with an increase in specific surface area and a decrease in the purity of carbon materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号