首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Data on the thermal stability of drugs was required to obtain information for handling, storage, shelf life and usage. In this study, the thermal stability of two nonsteroidal anti-inflammatory drugs (NSAIDs) was determined by differential scanning calorimetry (DSC) and simultaneous thermogravimetery/differential thermal analysis (TG/DTA) techniques. The results of TG analysis revealed that the main thermal degradation for the naproxen and celecoxib occurs in the temperature ranges of 196–300 and 245–359 °C, respectively. The TG/DTA analysis of compounds indicates that naproxen melts (at about 158.1 °C) before it decomposes. However, the thermal decomposition of the celecoxib started about 185 °C after its melting. The influence of the heating rate (5, 10, 15, and 20 °C min−1) on the DSC behavior of the both drug samples was verified. The results showed that, as the heating rate was increased, decomposition temperatures of the compounds were increased. Also, the kinetic parameters such as activation energy and frequency factor for the compounds were obtained from the DSC data by non-isothermal methods proposed by ASTM E696 and Ozawa. Based on the values of activation energy obtained by various methods, the following order for the thermal stability was noticed: naproxen > celecoxib. Finally, the values of ΔS #, ΔH #, and ΔG # of their decomposition reaction were calculated.  相似文献   

2.
The imidazolinium and benzimidazolium bromide salts with pentafluor substituents on N atom were synthesized. The structures of imidazolinium and benzimidazolium bromide salts obtained were conformed by 1H and 13C NMR, 19F NMR and elemental analysis. It was found that pyrolytic decomposition occurs with melting in salts. The imidazolinium and benzimidazolium bromide salts were studied by TG-DTG and DTA from ambient temperature to 1000°C in nitrogen atmosphere. The decomposition occurred mainly in one stage and the values of activation energy E, frequency factor A, reaction order n, enthalpy change ΔH #, entropy change ΔS # and Gibbs free energy ΔG #, of the thermal decomposition were calculated by means of Coats-Redfern (CR), MacCallum-Tanner (MC) and van Krevelen (vK) methods. The activation energy value obtained by CR and MC methods were in good agreement with each other while those obtained by vK were found to be 10–12 kJ mol−1 larger.  相似文献   

3.
In order to investigate relative reactivity of different oxidants in solid-state reactions of pyrotechnic mixtures, thermal properties of Sn + Sr(NO3)2, Sn + Ba(NO3)2, and Sn + KNO3 pyrotechnic systems have been studied by means of TG, DTA, and DSC methods and the results compared with those of pure oxidants. The apparent activation energy (E), ΔG #, ΔH #, and ΔS # of the combustion processes were obtained from the DSC experiments. The results showed that the nature of oxidant has a significant effect on ignition temperature, and the kinetic of the pyrotechnic mixtures’ reactions, and the relative reactivity of these mixtures was found to obey in the following order: Sn + Sr(NO3)2 > Sn + Ba(NO3)2 > Sn + KNO3.  相似文献   

4.
The hydrolysis of β-propiolactone and β-butyrolactone in binary water + dioxane mixtures was investigated by kinetic studies. The following conclusions were reached: First, β-propiolactone is more reactive than β-butyrolactone across the range of water + dioxane compositions. This observation was rationalized in terms of the electric charge flow caused by the β-butyrolactone’s methyl substituent. Second, hydrolysis of these lactones is essentially enthalpy controlled. Third, an increase in the dioxane percentage, which relaxes the intermolecular hydrogen bonds in the ordered structure of water, reduces the enthalpy of activation ΔH # and simultaneously increases the entropy of activation ΔS #(absolute value) for solvent compositions up to 60% dioxane. Fourth, plotting ΔH #S # against the solvent composition yields an N-shaped curve. This results is a consequence of the quadratic and cubic terms appearing in the expressions of ΔH # and ΔS # as functions of the solvent media composition. Fifth, an ABC classification was set up to characterize the behavior of ΔH #S # for the solvolysis of these lactones.  相似文献   

5.
The kinetics and thermodynamics of the thermal dehydration of aluminum phosphate monohydrate, AlPO4 · H2O were studied using thermogravimetry (TG-DTG-DTA) at four heating rates in dry air atmosphere. The activation energies of the dehydration step of AlPO4 · H2O were calculated through the methods of Friedman (FR) and Flynn–Wall–Ozawa (FWO) and the possible conversion function has been estimated through the Achar and Li–Tang equations. The independent activation energies on extent of conversions and the better kinetic model of the dehydration reaction for AlPO4 · H2O indicate single kinetic mechanism and the F 2.05 model as a simple n-order reaction of “chemical process or mechanism no-invoking equation”, respectively. The positive values of ΔH# and ΔG# for the dehydration reaction show that it is endothermic and non-spontaneous process and it is connected with the introduction of heat. The kinetic and thermodynamic functions calculated for the dehydration reaction by different techniques and methods were found to be consistent.  相似文献   

6.
A new unsymmetrical solid Schiff base (LLi) was synthesized using L-lysine, o-vanillin and 2-hydroxy-l-naphthaldehyde. Solid lanthanum(III) complex of this ligand [LaL(NO3)]NO3·2H2O have been prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt=Ae−E/RT(1−α)2. The kinetic parameters (E, A), activation entropy ΔS # and activation free-energy ΔG # were also gained.  相似文献   

7.
For the first time, a polygalacturonase from the culture broth of Tetracoccosporium sp. was isolated and incubated at 30°C in an orbital shaker at 160 rpm for 48h. The enzyme was purified by ammonium sulfate precipitation and two-step ion-exchange chromatography and had an apparent molecular mass of 36 kDa, as shown by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Its optimum activity was at pH 4.3 and 40°C, and the K m and V max values of this enzyme (for polygalacturonic acid) were 3.23 mg/mL and 0.15 μmol/min, respectively. Ag+, Co2+, EDTA, Tween-20, Tween-80, and Triton X-100 stimulated polygalacturonase activity whereas Al3+, Ba2+, Ca2+, Fe2+, Fe3+, Ni2+, Mg2+, Mn2+, and SDS inhibited it. In addition, iodoacetamide and iodoacetic acid did not inhibit enzyme activity at a concentration of 1 mM, indicating that cysteine residues are not part of the catalytic site of polygalacturonase. We studied the kinetic properties and thermal inactivation of polygalacturonase. This enzyme exhibited a t 1/2 of 63 min at 60°C and its specific activity, turnover number, and catalytic efficiency were 6.17 U/mg, 113.64 min−1, and 35.18 mL/(min·mg), respectively. The activation energy (ΔE #) for heat inactivation was 5.341 kJ/mol, and the thermodynamic activation parameters ΔG #, ΔH #, and ΔS # were also calculated, revealing a potential application for the industry.  相似文献   

8.
Catalytic activity of catalase (CAT) immobilized on a modified silicate matrix to mediate decomposition of meta-chloroperoxibenzoic acid (3-CPBA) in acetonitrile has been investigated by means of quantitative UV-spectrophotometry. Under the selected experimental conditions, the kinetic parameters: the apparent Michaelis constat (K M ), the apparent maximum rate of enzymatic reaction (V max app ), the first order specific rate constants (k sp ), the energy of activation (E a ) and the pre-exponential factor of the Arrhenius equation (Z0) were calculated. Conclusions regarding the rate-limiting step of the overall catalytic process were drawn from the calculated values of the Gibbs energy of activation ΔG*, the enthalpy of activation ΔH*, and the entropy of activation ΔS*.  相似文献   

9.
The kinetics of the anation reaction of cis-diaquo-bis-oxalatochromate(III) ion by DL-alanine has been studied spectrophotometrically in the pH range 3.8 to 7.3, where DL-alanine remains in zwitterionic form. A second-order rate law has been established. Reaction rates in three different ethanol-water mixtures were measured. In each solvent medium the anation rate is higher as compared to water exchange reaction at a particular temperature. The activation parameters (gDH# and ΔS#) in different ethanol-water mixtures were obtained from Eyring plots. ΔG#(ΔH#TΔS #) values were calculated in each solvent medium and compared with that of the isotopic water exchange process. A reaction mechanism involving theS N2 path has been suggested.  相似文献   

10.
The present article describes the synthesis, structural features and thermal studies of heterochelates of the type [M(SB)(benen)(H2O)]·nH2O [where H2SB=(Z)-2-(2,2,2-trifluoro-1-(5-hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)ethylideneamino)benzoic acid, benen=bis(benzylidene)ethylenediamine and M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and VO(IV)]. The Schiff base (H2SB) have been characterized on the basis of elemental analysis, IR, 1H and 13C NMR. The heterochelates have been characterized on the basis of elemental analyses, magnetic measurements, solid state conductivity measurements, IR, reflectance spectra, and thermal studies. The FAB mass spectrum of [Co(SB)(benen)(H2O)] has been carried out. The kinetic parameters such as order of reaction (n) and the energy of activation (E a) have been reported using Freeman-Carroll method. The pre-exponential factor (A), the activation entropy (ΔS #), the activation enthalpy (ΔH #) and the free energy of activation (ΔG #) have been calculated.  相似文献   

11.
Penicillin G acylase (PA, EC 3.5.1.11) from Alcaligenes faecalis (AfPA) is one of the most thermostable bacterial penicillin acylases. However, systematic data about the thermal stability of AfPA are not found in the literature. A systematic study of the influence of pH on the thermal stability of AfPA was done in the pH range 7.5–9.5. It was found that in all pH ranges studied the enzyme inactivation follows first-order kinetics. The dependence of the inactivation rate constant on pH has an S-shape with an inflection point at pH 8.3–8.5. The temperature dependences of the inactivation rate constant at four pH values were obtained and activation parameters ΔH # and ΔS # were calculated for each pH value. The decrease of both values, ΔH # and ΔS # with pH growth shows that a minimum of one iogenic group is essential for the enzyme’s thermal stability.  相似文献   

12.
The kinetics of oxidation-reduction reaction between N,N-diethylhydroxylamine (DEHAN) and nitrous acid in nitric acid solution have been studied by spectrophotometry at 9.5°C. The rate equation is −d[HNO2]/dt=K[HNO2]·[DEHAN][HNO3] and the rate constantK=12.81 (mol/l)−2·min−1. A possible mechanism has been suggested on the basis of chemical analysis and Raman spectra. The activation energyE and the thermodynamic functions ΔH #, ΔG # and ΔS # are also calculated.  相似文献   

13.
The lactose/KClO3 is a widely used pyrotechnic mixture to vaporize organic materials, such as smoke dyes. However, because of low ignition temperature of this mixture, serious precaution should be taken into account to prevent its accidental self-ignition. In order to find a safe and efficient alternative of this conventional mixture, KClO3 has been replaced by common oxidizing agents including KMnO4, KNO3, KClO4, Ba(NO3)2, PbO2 and NH4ClO4. TG and DTA analysis have been used to obtain thermal characteristic of the mixtures. Based on ignition temperature of the pyrotechnic mixtures we can divide them into four categories as follows: (1) the mixture igniting at low temperature, i.e., at about 200 °C. (2) Moderate temperature igniting mixture, in which ignition occurs at 300–400 °C. (3) High temperature igniting mixture with ignition temperature higher than 400 °C .(4) Not igniting mixtures. Also, the apparent activation energy (E), ΔG #, ΔH #, ΔS # and critical ignition temperature (T b ) of the ignition processes of low and moderate temperature igniting mixtures were obtained from the DSC experiments. Finally, among the investigated mixtures, lactose/KNO3 can be considered as a safe and efficient pyrotechnic composition for vaporization of organic materials, such as smoke dyes, due to its moderate safe ignition temperature.  相似文献   

14.
In this paper, the thermal behaviours of two organophosphorous compounds, N,N-dimethyl-N′,N′-diphenylphosphorodihydrazidic (NDD) and diphenyl amidophosphate (DPA), were studied by thermogravimetery (TG), differential thermal analysis (DTA) and differential scanning calorimetery (DSC) techniques under non-isothermal conditions. The results showed that NDD melts about 185 °C before it decomposes. NDD decomposition occurs in two continuous steps, in the 190–410 °C temperature range. First thermal degradation stage for NDD results a broad exothermic peak in the DTA curve that is continued with a small exothermic peak at the end of decomposition process. On the other hand, applying TG-DTA techniques indicates that DPA melts about 150 °C before it decomposes. This compound decomposes in the temperature range of 230 to 330 °C in two steps. These steps are endothermic and exothermic, respectively. Activation energy and pre-exponential factor for the first step of decomposition of each compound were found by means of Kissinger method and were verified by Ozawa–Flynn–Wall method. Activation energy obtained by Kissinger method for the first stage of NDD and DPA decompositions are 138 and 170 KJ mol−1, respectively. Finally, the thermodynamic parameters (ΔG #, ΔH # and ΔS #) for first step decomposition of investigated organophosphorous were determined.  相似文献   

15.
The initial reaction rate (V 0) for the esterification reaction of feruloyl esterase (FAE-II) at different temperatures (288, 298, 308, 318, 328, 338, 348, and 358 K) and various ethyl ferulate concentrations [(2, 4, 6, 8, 10, 12, 14, and 16) × 10−4 mol l−1 of ethyl ferulate in water] were determined. The Lineweaver-Burk double reciprocal plot yielded the kinetic parameters (maximal velocity V max, Michaelis constant K m, and second order rate constant V/K). The effects of temperature on those 3 kinetic parameters were presented and discussed. The thermodynamic parameters ΔH* (enthalpy of activation), ΔG* (free energy of activation), ΔS* (entropy of activation), ΔG E-S (free energy change of substrate binding), ΔG E-T (free energy change of transition state formation), related to that biochemical process were determined and discussed from van’t Hoff plot, Arrhenius plot, and Eyring plot.  相似文献   

16.
The novel ternary solid complex Gd(C5H8NS2)3(C12H8N2) has been obtained from the reaction of hydrous gadolinium chloride, ammonium pyrrolidinedithiocarbamate (APDC), and 1,10-phenanthroline (o-phen · H2O) in absolute ethanol. The complex was described by an elemental analysis, TG-DTG, and an IR spectrum. The enthalpy change of the complex formation reaction from a solution of the reagents, Δr H m ϑ (sol), and the molar heat capacity of the complex, c m , were determined as being − 15.174 ± 0.053 kJ/mol and 72.377 ± 0.636 J/(mol K) at 298.15 K by using an RD496-III heat conduction microcalorimeter. The enthalpy change of a complex formation from the reaction of the reagents in a solid phase, Δr H m ϑ (s), was calculated as being 52.703 ± 0.304 kJ/mol on the basis of an appropriate thermochemical cycle and other auxiliary thermodynamic data. The thermodynamics of the formation reaction of the complex was investigated by the reaction in solution. Fundamental parameters, the activation enthalpy (ΔH ϑ ), the activation entropy (ΔS ϑ ), the activation free energy (ΔG ϑ ), the apparent reaction rate constant (k), the apparent activation energy (E), the preexponential constant (A), and the reaction order (n), were obtained by the combination of the thermochemical data of the reaction and kinetic equations, with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, Δc U, was determined as being −17588.79 ± 8.62 kJ/mol by an RBC-II type rotatingbomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m ϑ , and standard enthalpy of formation, Δf H m ϑ , were calculated to be −17604.28 ± 8.62 and −282.43 ± 9.58 kJ/mol, respectively. The text was submitted by the authors in English.  相似文献   

17.
The kinetic parameters of the exothermic decomposition of the title compound in a temperatureprogrammed mode have been studied by means of DSC. The DSC data obtained are fitted to the integral, differential, and exothermic rate equations by the linear least-squares, iterative, combined dichotomous, and least-squares methods, respectively. After establishing the most probable general expression of differential and integral mechanism functions by the logical choice method, the corresponding values of the apparent activation energy (E a), preexponential factor (A), and reaction order (n) are obtained by the exothermic rate equation. The results show that the empirical kinetic model function in differential form and the values of E a and A of this reaction are (1 − α)−4.08, 149.95 kJ mol−1, and 1014.06 s−1, respectively. With the help of the heating rate and kinetic parameters obtained, the kinetic equation of the exothermic decomposition of the title compound is proposed. The critical temperature of thermal explosion of the compound is 155.71°C. The above-mentioned kinetic parameters are quite useful for analyzing and evaluating the stability and thermal explosion rule of the title compound. The text was submitted by the authors in English.  相似文献   

18.
Kinetic studies on Li+ exchange between the cryptands C222 and C221, and γ-butyrolactone as solvent were performed as a function of ligand-to-metal ratio, temperature and pressure using 7Li NMR. The thermal rate and activation parameters are: C222: k 298 = (3.3 ± 0.8)×104 M−1 s−1, ΔH # = 35 ± 1 kJ mol−1 and ΔS # = −41 ± 3 J K−1 mol−1; C221: k 298 = 105 ± 32 M−1 s−1, ΔH # = 48 ± 1 kJ mol−1 and ΔS # = −45 ± 2 J K−1 mol−1. Temperature and pressure dependence measurements were performed in the presence of an excess of Li+. The influence of pressure on the exchange rate is insignificant for both ligands, such that the value of activation volume is around zero within the experimental error limits. The activation parameters obtained in this study indicate that the exchange of Li+ between solvated and chelated Li+ ions follows an associative interchange mechanism. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . For Part I see: R. Puchta, M. Galle, N.J.R. van Hommes, E. Pasgreta and R. van Eldik: Inorg. Chem. 43, 8227 (2004).  相似文献   

19.
The thermodynamic and thermal properties of [Cu(L)2·Cl2], [Ni(L)2]·Cl2, [Co(L)2·Cl2]; L=1,2-bis(o-aminophenoxy)ethane (BAFE), complexes have been investigated. The thermal decomposition of the complexes took place in two distinct steps in endothermic reaction up to 700°C. The activation energy E, the entropy change S #, enthalpy H change and Gibbs free energy change G # were calculated from the results of thermogravimetry analysis (TG) and heat capacity from the results of differential scanning calorimetry (DSC). It was found that the thermal stabilities and activation energies of the complexes follow the order Ni(II)>Cu(II)>Co(II) and E Co<E Ni<E Cu, respectively.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

20.
The oxidative degradation of d-xylose by cerium(IV) has been found to be slow in acidic aqueous solution with the evidence of autocatalysis. The reaction is accelerated in the cetyltrimethylammonium bromide (CTAB) micellar medium but sodium dodecyl sulfate (an anionic surfactant) has no effect. The pseudo first-order rate constants have been determined at different [reductant], [oxidant], [H2SO4], temperature, and [CTAB]. The reaction rate increased with increasing [d-xylose] and decreased with increase in [H2SO4]. The CTAB-micelle-catalyzed kinetic results can be interpreted by the pseudophase model. The kinetic parameters such as association constant (K s), micellar medium rate constant (k m), and activation parameters (E a, ΔH # and ΔS #) are evaluated and the reaction mechanism is proposed. The reaction rate is inhibited by electrolytes and the results provide an evidence for the exclusion of the reactive species from the reaction site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号