首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on recent developments of an “at wavelength” full-field imaging technique for defect inspection of multilayer mask blanks for extreme ultraviolet lithography (EUVL). Our approach uses photoemission electron microscopy (PEEM) in a near normal incidence mode at 13.5 nm wavelength to image the photoemission induced by the EUV wave field on the multilayer blank surface. We analyze buried defects on Mo/Si multilayer samples down to a lateral size of 50 nm and report on first results obtained from a six inches mask blank prototype as prerequisite for industrial usage.  相似文献   

2.
The effect of focal spot size on in-band 13.5 nm extreme ultraviolet (EUV) emission from laser-produced Sn plasmas was investigated for an EUV lithography light source. Almost constant in-band conversion efficiency from laser to 13.5 nm EUV light was noted with focal spot sizes from 60 to 500 microm. This effect may be explained by the opacity of Sn plasmas. Optical interferometry showed that the EUV emission must pass through a longer plasma with higher density when the focal spot is large, and strong reabsorption of EUV light was confirmed by a dip located at 13.5 nm in the spectrum.  相似文献   

3.
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).  相似文献   

4.
研究了不同条件下脉冲放电CO2激光烧蚀平板锡靶产生的等离子体极紫外辐射特性, 设计并建立了一套掠入射极紫外平焦场光栅光谱仪, 结合X射线CCD探测了光源在6.5~16.8 nm波段的时间积分辐射光谱,得到了极紫外光谱随激光脉宽, 入射脉冲能量及背景气压的变化规律。实验结果发现:入射激光脉冲能量在30~600 mJ变化时,极紫外辐射光谱的强度随辐照激光脉冲能量的增加而增加, 但并不是线性关系, 具有饱和效应, 且产生极紫外辐射的脉冲能量阈值约为30 mJ,当激光脉冲能量为425 mJ时具有最高的转换效率,此时中心波长13.5 nm处2%带宽内的转换效率约为1.2%。激光脉冲半高全宽在50~120 ns范围内变化时, 极紫外辐射光谱的峰值位置均位于13.5 nm,光谱形状几乎没有什么变化, 但是脉宽从120 ns变到52 ns后,由于激光功率密度的提高,极紫外辐射强度也随之增强了约1.6倍。极紫外光谱的强度随背景气压的增大而迅速下降, 当腔内空气气压为200 Pa时, 极紫外辐射光子几乎被全部吸收,而当缓冲氦气气压为7×104 Pa时,仍能够探测到微弱的极紫外辐射信号,计算表明100 Pa的空气对13.5 nm极紫外光的吸收系数为3.0 m-1,而100 Pa的He气的吸收系数为0.96 m-1。  相似文献   

5.
Efficient generation of extreme UV (EUV) light at lambda = 13.5 nm from a bulk Sn target has been demonstrated by using a fiber laser. The conversion efficiency from the 1064 nm IR to the EUV was measured to be around 0.9% into 2pi steradians within a 2% bandwidth. To the best of our knowledge, this is the first time an all-fiber system was used to generate EUV or soft x rays.  相似文献   

6.
A laser-plasma source for extreme-ultraviolet (EUV) light that uses a rotating cryogenic solid-state Xe target has been characterized. We focused on parameters at the wavelength of 13.5 nm with 2% bandwidth required for an EUV lithography source and investigated improvements of the conversion efficiency (CE). With the drum rotating, there was an increase in CE and less fast ions compared with the case for the drum at rest. It is considered that the Xe gas on the target surface can produce optimal-scale plasma, and satellite emission lines in Xe plasma effectively increase the EUV intensity, and the ion number is decreased by the gas curtain effect. The dependence of CE on the laser wavelength, laser energy and intensity also studied. As a result, the maximum CE was 0.9% at 13.5 nm with 2% bandwidth under the optimal condition. By continuous irradiation of a Nd:YAG slab laser at a repetition rate of 320 Hz and an average power of 110 W, the target continuously generated EUV light with an average power of 1 W at 13.5 nm with 2% bandwidth. The achieved performances provide valuable information for the design of a future EUV lithography source.  相似文献   

7.
Natural circular dichroism (CD) spectra in the extreme ultraviolet (EUV) region down to a wavelength of 80 nm have been observed for the first time, using an alanine thin film deposited on sodium salicylate coated glass as a sample. Calibrated EUV‐CD spectra of l ‐alanine exhibited a large negative peak at around 120 nm and a positive CD signal below 90 nm, which were roughly predicted by theoretical calculations. A CD measurement system with an Onuki‐type polarizing undulator was used to obtain the EUV‐CD spectra. This CD system, the development of which took five years, can be used to observe even weak natural CD spectra. The polarization characteristics of this system were also evaluated in order to calibrate the recorded CD spectra.  相似文献   

8.
陈鸿  兰慧  陈子琪  刘璐宁  吴涛  左都罗  陆培祥  王新兵 《物理学报》2015,64(7):75202-075202
采用波长13.5 nm的极紫外光作为曝光光源的极紫外光刻技术是最有潜力的下一代光刻技术之一, 它是半导体制造实现10 nm及以下节点的关键技术. 获得极紫外辐射的方法中, 激光等离子体光源凭借转换效率高、收集角度大、碎屑产量低等优点而被认为是最有前途的极紫外光源. 本文开展了脉冲TEA-CO2激光和Nd:YAG激光辐照液滴锡靶产生极紫外辐射的实验, 对极紫外辐射的谱线结构以及辐射的时空分布特性进行了研究.实验发现: 与TEA-CO2激光相比, 较高功率密度的Nd:YAG激光激发的极紫外辐射谱存在明显的蓝移; 并且激光等离子体光源可以认为是点状光源, 其极紫外辐射强度随空间角度变化近似满足Lambertian分布.  相似文献   

9.
This paper first reviews an EUV normal incidence solar telescope that we have developed in our lab. The telescope is composed of four EUV telescopes and the operation wavelengths are 13.0 nm, 17.1 nm, 19.5 nm, and 30.4 nm. These four wavelengths, fundamental to the research of the solar activity and the atmosphere dynamics, are always chosen by the EUV normal incidence solar telescope. In the EUV region, almost all materials have strong absorption, so optics used in this region must be coated by the multila...  相似文献   

10.
Ni/4H-SiC Schottky photodiodes of 5 mm x 5 mm area have been fabricated and characterized. The photodiodes show less than 0.1 pA dark current at -4 V and an ideality factor of 1.06. A quantum efficiency (QE) between 3 and 400 nm has been calibrated and compared with Si photodiodes optimized for extreme ultraviolet (EUV) detection. In the EUV region, the QE of SiC detectors increases from 0.14 electrons/photon at 120 nm to 30 electrons/photon at 3 nm. The mean energy of electron-hole pair generation of 4H-SiC estimated from the spectral QE is found to be 7.9 eV.  相似文献   

11.
We have developed a multilayer mirror for extreme UV (EUV) radiation (13.5?nm), which has near-zero reflectance for IR line radiation (10.6?μm). The EUV reflecting multilayer is based on alternating B4C and Si layers. Substantial transparency of these materials with respect to the IR radiation allowed the integration of the multilayer coating in a resonant quarter-wave structure for 10.6?μm. Samples were manufactured using magnetron sputtering deposition technique and demonstrated suppression of the IR radiation by up to 3 orders of magnitude. The EUV peak reflectance amounts 45% at 13.5?nm, with a bandwidth at FWHM being 0.284?nm. Therefore such a mirror could replace conventional multilayer mirrors to suppress undesired spectral components in monochromatic imaging applications, including EUV photolithography.  相似文献   

12.
Carbon contamination on extreme ultraviolet (EUV) optics has been observed in EUV lithography. In this paper, we performed in situ monitoring of the build-up and removal of carbon contamination on Mo/Si EUV multilayers by measuring the secondary electron yield as a function of primary electron energy. An electron beam with an energy of 2 keV was used to simulate the EUV radiation induced carbon contamination. For a clean EUV multilayer, the maximum secondary electron yield is about 1.5 electrons per primary electron at a primary electron energy of 467 eV. The maximum yield reduced to about 1.05 at a primary electron energy of 322 eV when the surface was covered by a non-uniform carbon layer with a maximum thickness of 7.7 nm. By analyzing the change in the maximum secondary electron yield with the final carbon layer thickness, the limit of detection was estimated to be less than 0.1 nm.  相似文献   

13.
激光等离子体极紫外光源具有体积小、稳定性高和输出波长可调节等优势,在极紫外光刻领域发挥着重要的作用。Bi靶激光等离子体极紫外光源在波长9~17 nm范围内具有较宽的光谱,可应用于制造极紫外光刻机过程中所需的极紫外计量学领域。利用平像场光谱仪和法拉第杯对Bi靶激光等离子体极紫外光源以及离子碎屑辐射特性进行了实验研究。在单脉冲激光打靶条件下,实验中观察到Bi靶激光等离子极紫外光谱在波长12.3 nm处出现了一个明显的凹陷,其对应着Si L-edge的吸收,是Bi元素光谱的固有属性。相应地在波长为11.8和12.5 nm位置处产生了两个宽带的辐射峰。研究了两波长光谱特性以及辐射强度随激光功率密度的变化。结果表明,在改变聚焦光斑大小实现不同激光功率密度(0.7×1010~3.1×1010 W·cm-2)过程中,当功率密度为2.0×1010 W·cm-2时两波长处的光辐射最强,其原因归结为Bi靶极紫外光辐射强度受激光能量用于支撑等离子膨胀的损失和极紫外光被等离子体再吸收之间的平衡制约所致。在改变激光能量实现不同激光功率密度过程中,由于烧蚀材料和产生两波长所需高阶离子随着功率密度的增加而增加,增强了两波长处的光辐射。进一步,研究了双脉冲激光对Bi靶极紫外光谱辐射特性影响,实验发现双脉冲打靶下原来在单脉冲打靶时出现在波长13~14 nm范围内的凹陷消失。最后,对单脉冲激光作用Bi靶产生极紫外光源碎屑角分布进行了测量。结果表明,当探测方向从靶面法线方向移动到沿着靶面方向上的过程中,探测到Bi离子动能依次减小,并且离子动能随激光脉冲能量降低而呈线性减小。此项研究有望为我国在研制极紫外光刻机过程所需的计量学领域提供技术支持和打下夯实的基础。  相似文献   

14.
戴岑  巩岩  张昊  李佃蒙  薛金来 《中国光学》2018,11(2):255-264
多层膜极紫外光刻掩模"白板"缺陷是制约下一代光刻技术发展的瓶颈之一,为提高对掩模"白板"上的膜层微结构缺陷的分辨能力,提出了一种微分干涉差共焦显微探测系统方案。基于标量衍射理论,计算了系统横向和轴向分辨率。利用MATLAB建模仿真,在数值孔径为0.65、工作波长为405 nm时,分析比较了微分干涉差共焦显微系统、传统显微系统和共焦显微系统的分辨率。结果表明微分干涉差共焦显微系统具有230 nm的横向分辨率和25 nm轴向台阶高度差的分辨能力(对应划痕等缺陷形式)。此外,仿真和分析了实际应用中探测器尺寸、样品轴向偏移等的影响,模拟分析了膜层微结构缺陷的探测,结果表明本系统可以探测200 nm宽、10 nm高的微结构缺陷,较另外两种系统有更好的探测能力。  相似文献   

15.
We examine the development of the project for manufacturing a Russian nanolithographer with an operating wavelength of λ = 13.5 nm for fabricating nanoelectronic element bases (chips) according to technological standards of 32–22 nm at the first stage and 22–16 nm at the second. A list of the project’s main participants and their duties is presented. An overview of current situation in EUV lithography in Russia is given. The main problems to be solved on the road to mass production of electronic components involving EUV lithography are discussed.  相似文献   

16.
We demonstrate the applicability of a Li-based liquid jet as a regenerative source of narrow-band extreme-ultraviolet (EUV) emission at 13.5 nm. It was found that a conventionally used single laser pulse did not produce optimum plasma conditions for a low-Z target, like Li. It was shown that deployment of dual nano-second laser pulses enhanced the in-band EUV conversion efficiency (CE) at 13.5 nm in 2 sr by three times its value using a single laser pulse. Dependence of the emission spectra and EUV CE on the delay time between dual laser pulses revealed that the emission at 13.5 nm from Li ions was preferably enhanced at a lower plasma temperature compared to that at 13.0 nm from oxygen ions.  相似文献   

17.
A thin Sn film was investigated as a mass-limited target for an extreme ultraviolet (EUV) lithography source. It was found that those energetic ions that are intrinsic with the mass-limited Sn target could be efficiently mitigated by introducing a low-energy prepulse. High in-band conversion efficiency from a laser to 13.5 nm EUV light could be obtained using an Sn film with a thickness down to 30 nm when irradiated by dual laser pulses. It was shown that the combination of dual pulse and inert Ar gas could fully mitigate ions with a low ambient pressure nearly without the penalty of the absorption of the EUV light.  相似文献   

18.
Surface modification and micro-structuring of polymers for different application is mainly performed using ultraviolet (UV) radiation from excimer lamps or excimer lasers. In this case, however, the radiation penetration depth may exceed 100 μm, thereby degrading the polymer deep inside. On the other hand, extreme ultraviolet (EUV) radiation is absorbed in a layer approximately 100 nm thick only. In this work, the radiation from a laser-plasma EUV source based on a double-stream gas-puff target is focused with a gold-coated ellipsoidal collector for surface modification of polymethylmethacrylate (PMMA). The spectrum of the focused radiation consists of a narrow feature with maximum at 10 nm and a long-wavelength tail up to 70 nm. The PMMA samples are mounted in the focal plane of the EUV collector or at some distance downstream this plane and irradiated for 10–60 s with 10-Hz repetition rate. The irradiated polymer samples were investigated using a scanning electron microscope. When the EUV fluence exceeds 10 mJ/cm2, smooth ablation of PMMA was obtained. For lower fluences but close to this value, strong surface modifications appeared.  相似文献   

19.
《中国物理 B》2021,30(9):95207-095207
Extreme ultraviolet(EUV) source produced by laser-induced discharge plasma(LDP) is a potential technical means in inspection and metrology. A pulsed Nd:YAG laser is focused on a tin plate to produce an initial plasma thereby triggering a discharge between high-voltage electrodes in a vacuum system. The process of micro-pinch formation during the current rising is recorded by a time-resolved intensified charge couple device camera. The evolution of electron temperature and density of LDP are obtained by optical emission spectrometry. An extreme ultraviolet spectrometer is built up to investigate the EUV spectrum of Sn LDP at 13.5 nm. The laser and discharge parameters such as laser energy, voltage, gap distance,and anode shape can influence the EUV emission.  相似文献   

20.
To develop polarizer functioning in the extreme ultraviolet (EUV) and soft X-ray region, the polar- ization performance of synthetic mica has been investigated theoretically with a simulation code using Fresnel equations and optical constants from the Henke database. The reflectance of synthetic mica crystal for s and p polarization was measured to investigate its polarization performance in a home-made synchrotron radiation soft X-ray polarimeter at beamline 3W1B, Beijing Synchrotron Radiation Facility (BSRF). The reflectivity of the synthetic mica crystal at an angle of grazing incidence of 48° was obtained from the experimental data, which is about 4.8x10<'-3> at 25 nm and 6.0×10<'-4> at 12 nm, and the linear polarizance of the X-ray reflected by the synthetic mica crystal that we measured using an analyzer-rotating method increases from 80% to 96.6% in this EUV region, while higher than 98.2% in the simulation. The result indicates that this synthetic mica crystal works as a practical polarizer in this EUV region of 12-25 nm, and also in an extensive wavelength region higher than 25 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号