首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
SINGULARPERTURBATIONFORANONLINEARBOUNDARYVALUEPROBLEMOFFIRSTORDERSYSTEMChenSonglin(陈松林)(ReceivedApril8,1984;RevisedApril15,19...  相似文献   

2.
A non-linear seales method is presented for the analysis of strongly non-linear oseillators of the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbdiqb-Hha4zaadaGaey4kaSIa% am4zaiaacIcacqWF4baEcaGGPaGae8xpa0JaeqyTduMaamOzaiaacI% cacqWF4baEcqWFSaalcuWF4baEgaGaaiaabMcaaaa!4FEC!\[\ddot x + g(x) = \varepsilon f(x,\dot x{\text{)}}\], where g(x) is an arbitrary non-linear function of the displacement x. We assumed that % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbdiab-Hha4jaacIcacqWF0baD% cqWFSaalcqaH1oqzcaGGPaGaeyypa0Jae8hEaG3aaSbaaSqaaiaaic% daaeqaaOGaaiikaiabe67a4jaacYcacqaH3oaAcaGGPaGaey4kaSYa% aabmaeaacqaH1oqzdaahaaWcbeqaaiaad6gaaaaabaGaamOBaiabg2% da9iaaigdaaeaacaWGTbGaeyOeI0IaaGymaaqdcqGHris5aOGae8hE% aG3aaSbaaSqaaiab-5gaUbqabaGccaGGOaGaeqOVdGNaaiykaiabgU% caRiaad+eacaGGOaGaeqyTdu2aaWbaaSqabeaacaWGTbaaaOGaaiyk% aaaa!67B9!\[x(t,\varepsilon ) = x_0 (\xi ,\eta ) + \sum\nolimits_{n = 1}^{m - 1} {\varepsilon ^n } x_n (\xi ) + O(\varepsilon ^m )\], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabsgacqaH+oaEcaGGVaGaaeizaiaadshacqGH9aqpdaaeWaqa% aiabew7aLnaaCaaaleqabaGaamOBaaaaaeaacaWGUbGaeyypa0JaaG% ymaaqaaiaad2gaa0GaeyyeIuoakiaadkfadaWgaaWcbaGaamOBaaqa% baGccaGGOaGaeqOVdGNaaiykaaaa!4FFC!\[{\text{d}}\xi /{\text{d}}t = \sum\nolimits_{n = 1}^m {\varepsilon ^n } R_n (\xi )\], % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabsgacqaH3oaAcaGGVaGaaeizaiaadshacqGH9aqpdaaeWaqa% aiabew7aLnaaCaaaleqabaGaamOBaaaaaeaacaWGUbGaeyypa0JaaG% imaaqaaiaad2gaa0GaeyyeIuoakiaadofadaWgaaWcbaGaamOBaaqa% baGccaGGOaGaeqOVdGNaaiilaiabeE7aOjaacMcaaaa!5241!\[{\text{d}}\eta /{\text{d}}t = \sum\nolimits_{n = 0}^m {\varepsilon ^n } S_n (\xi ,\eta )\], and R n,S nare to be determined in the course of the analysis. This method is suitable for the systems with even non-linearities as well as with odd non-linearities. It can be viewed as a generalization of the two-variable expansion procedure. Using the present method we obtained a modified Krylov-Bogoliubov method. Four numerical examples are presented which served to demonstrate the effectiveness of the present method.  相似文献   

3.
We consider a family of linearly elastic shells indexed by their half-thickness , all having the same middle surface % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadofacqGH9aqpcqaHvpGAcaGGOaGafqyYdCNbaebacaGGPaaa% aa!4317!\[S = \varphi (\bar \omega )\], with % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabew9aQjaacQdacuaHjpWDgaqeaiabgkOimlaadkfadaahaaWc% beqaaiaaikdaaaGccqGHsgIRcaWGsbWaaWbaaSqabeaacaaIZaaaaa% aa!4812!\[\varphi :\bar \omega \subset R^2 \to R^3 \], and clamped along a portion of their lateral face whose trace on S is % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabew9aQjaacIcacqaHZoWzdaWgaaWcbaGaaGimaaqabaGccaGG% Paaaaa!41EB!\[\varphi (\gamma _0 )\], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacIcacqaHZoWzdaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa!401F!\[(\gamma _0 )\] is a fixed portion of with length % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacIcacqaHZoWzdaWgaaWcbaGaaGimaaqabaGccaGGPaGaeyOp% a4JaaGimaaaa!41E1!\[(\gamma _0 ) > 0\]. Let % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacIcacqaHZoWzdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaa% cIcacqaH3oaAcaGGPaGaaiykaaaa!45AA!\[(\gamma _{\alpha \beta } (\eta ))\] be the linearized strain tensor of S. We make an essential geometric and kinematic assumption, according to which the semi-norm % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \] defined by % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqaH3oaAcaGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaGccqGH9aqpdaGadeqaamaaqababaGaaiiFaiaacYhaaSqaaiabeg% 7aHfrbbjxAHXgaiuaacaWFSaGaeqOSdigabeqdcqGHris5aOGaeq4S% dCMaeqySdeMaeqOSdiMaaiikaiabeE7aOjaacMcacaGG8bGaaiiFam% aaDaaaleaacaWGmbWaaWbaaWqabeaacaaIYaaaaSGaaiikaiabeM8a% 3jaacMcaaeaacaaIYaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaaca% aIXaGaai4laiaaikdaaaaaaa!61F1!\[|\eta |_\omega ^M = \left\{ {\sum\nolimits_{\alpha ,\beta } {||} \gamma \alpha \beta (\eta )||_{L^2 (\omega )}^2 } \right\}^{1/2} \] is a norm over the space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadAfacaGGOaGaeqyYdCNaaiykaiabg2da9maacmqabaGaeq4T% dGMaeyicI4SaamisamaaCaaaleqabaGaaGymaaaakiaacIcacqaHjp% WDcaGGPaGaai4oaiabeE7aOjabg2da9iaab+gacaqGUbGaeq4SdC2a% aSbaaSqaaiaabcdaaeqaaaGccaGL7bGaayzFaaaaaa!5361!\[V(\omega ) = \left\{ {\eta \in H^1 (\omega );\eta = {\text{on}}\gamma _{\text{0}} } \right\}\], excluding however the already analyzed membrane shells, where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeo7aNnaaBaaaleaacaqGWaaabeaakiabg2da9iabgkGi2kab% eM8a3baa!42F8!\[\gamma _{\text{0}} = \partial \omega \] and S is elliptic. This new assumption is satisfied for instance if % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeo7aNnaaBaaaleaacaqGWaaabeaakiabgcMi5kabgkGi2kab% eM8a3baa!43B9!\[\gamma _{\text{0}} \ne \partial \omega \] and S is elliptic, or if S is a portion of a hyperboloid of revolution.We then show that, as 0, the averages % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiabew7aLbaa% aaGcdaWdXaqaaiaadwhadaqhaaWcbaGaamyAaaqaaiabew7aLbaaki% aabsgacaWG4bWaa0baaSqaaiaaiodaaeaacqaH1oqzaaaabaGaeyOe% I0IaeqyTdugabaGaeqyTduganiabgUIiYdaaaa!4E28!\[\frac{1}{{2^\varepsilon }}\int_{ - \varepsilon }^\varepsilon {u_i^\varepsilon {\text{d}}x_3^\varepsilon } \] across the thickness of the shell of the covariant components u i of the displacement of the points of the shell strongly converge in the completion V M #() of V() with respect to the norm % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \], toward the solution of a generalized membrane shell problem. This convergence result also justifies the recent formal asymptotic approach of D. Caillerie and E. Sanchez-Palencia.The limit problem found in this fashion is sensitive, according to the terminology recently introduced by J.L. Lions and E. Sanchez-Palencia, in the sense that it possesses two unusual features: it is posed in a space that is not necessarily contained in a space of distributions, and its solution is highly sensitive to arbitrarily small smooth perturbations of the data.Under the same assumption, we also show that the average % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiabew7aLbaa% aaGcdaWdXaqaaiaadwhadaqhaaWcbaGaamyAaaqaaiabew7aLbaaki% aabsgacaWG4bWaa0baaSqaaiaaiodaaeaacqaH1oqzaaaabaGaeyOe% I0IaeqyTdugabaGaeqyTduganiabgUIiYdaaaa!4E28!\[\frac{1}{{2^\varepsilon }}\int_{ - \varepsilon }^\varepsilon {u_i^\varepsilon {\text{d}}x_3^\varepsilon } \] where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadwhadaahaaWcbeqaaiabew7aLbaakiabg2da9iaacIcacaWG% 1bWaa0baaSqaaiaadMgaaeaacqaH1oqzaaGccaGGPaaaaa!452C!\[u^\varepsilon = (u_i^\varepsilon )\], and the solution % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabe67a4naaCaaaleqabaGaeqyTdugaaOGaeyicI4SaamOvamaa% BaaaleaacaWGlbaabeaakiaacIcacqaHjpWDcaGGPaaaaa!465B!\[\xi ^\varepsilon \in V_K (\omega )\] of Koiter's equations have the same principal part as 0 in the same space V M () as above. For such generalized membrane shells, the two-dimensional shell model of W.T. Koiter is thus likewise justified.We also treat the case where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \] is no longer a norm over V(), but is a norm over the space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadAfadaWgaaWcbaGaam4saaqabaGccaGGOaGaeqyYdCNaaiyk% aiabg2da9maacmqabaGaeq4TdGMaeyypa0JaaiikaiabeE7aOnaaBa% aaleaacaWGPbaabeaakiaacMcacqGHiiIZcaWGibWaaWbaaSqabeaa% caaIXaaaaOGaaiikaiabeM8a3jaacMcacqGHxdaTcaWGibWaaWbaaS% qabeaacaaIYaaaaOGaaiikaiabeM8a3jaacMcacaGG7aGaeq4TdG2a% aSbaaSqaaiaadMgaaeqaaOGaeyypa0JaeyOaIy7aaSbaaSqaaiaadA% haaeqaaOGaeq4TdG2aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGim% aiGac+gacaGGUbGaeq4SdC2aaSbaaSqaaiaaicdaaeqaaaGccaGL7b% GaayzFaaaaaa!68B8!\[V_K (\omega ) = \left\{ {\eta = (\eta _i ) \in H^1 (\omega ) \times H^2 (\omega );\eta _i = \partial _v \eta _3 = 0\operatorname{on} \gamma _0 } \right\}\], thus also excluding the already analyzed flexural shells. Then a convergence theorem can still be established, but only in the completion of the quotient space V()/V 0() with repect to % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadAfadaWgaaWcbaGaaGimaaqabaGccaGGOaGaeqyYdCNaaiyk% aiabg2da9maacmqabaGaeq4TdGMaeyicI4SaamOvaiaacIcacqaHjp% WDcaGGPaGaai4oaiabeo7aNjabeg7aHjabek7aIjaacIcacqaH3oaA% caGGPaGaeyypa0JaaeimaiaabMgacaqGUbGaeqyYdChacaGL7bGaay% zFaaaaaa!5997!\[V_0 (\omega ) = \left\{ {\eta \in V(\omega );\gamma \alpha \beta (\eta ) = {\text{0in}}\omega } \right\}\].These convergence results, together with those that we already obtained for membrane and flexural shells, jointly with B. Miara in the second case, thus constitute an asymptotic analysis of linearly elastic shells in all possible cases.  相似文献   

4.
For the problem of bending of a semi-infinite strip x0, –1y1, with the sides y=±1 clamped, we give a proof that the end-data% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaarmWu51MyVXgaiuGacqWFgpGzdaWgaaWcbaGaaeiEaiaabIha% aeqaaGqbaOGae4hiaaIaaiikaiaaicdacaGGSaGae4hiaaIaamyEai% aacMcacqGFGaaicqGH9aqpcqGFGaaicaWGMbGaaiikaiaadMhacaGG% PaGaaiilaaqaaiab-z8aMnaaBaaaleaacaqG5bGaaeyEaaqabaGccq% GFGaaicaGGOaGaaGimaiaacYcacqGFGaaicaWG5bGaaiykaiab+bca% Giabg2da9iab+bcaGiaadAgacaGGOaGaamyEaiaacMcacaGGSaaaaa% a!5D6D!\[\begin{array}{l} \phi _{{\rm{xx}}} (0, y) = f(y), \\ \phi _{{\rm{yy}}} (0, y) = f(y), \\ \end{array}\] where f(y), g(y) are arbitrary independent functions prescribed on (–1,1), may be expanded as a series of the bi-orthogonal Papkovich-Fadle eigenfunctions for the strip. This represents an advance on the standard work of R. T. C. Smith [6], who proved such an expansion, but under conditions which are often not satisfied in practice. In particular we are able to solve this bi-harmonic boundary value problem when f, g do not satisfy the side conditions% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaacaWGMbGaaiikaiabgglaXkaaigdacaGGPaqedmvETj2BSbac% faGae8hiaaIaeyypa0Jae8hiaaIaamOzamaaCaaaleqabaGaai4jaa% aakiab-bcaGiaacIcacqGHXcqScaaIXaGaaiykaiab-bcaGiabg2da% 9iab-bcaGiaaicdacaGGSaaabaGaam4zaiaacIcacqGHXcqScaaIXa% Gaaiykaiab-bcaGiabg2da9iab-bcaGiaadEgadaahaaWcbeqaaiaa% cEcaaaGccqWFGaaicaGGOaGaeyySaeRaaGymaiaacMcacqWFGaaicq% GH9aqpcqWFGaaicaaIWaGaaiilaaaaaa!6222!\[\begin{array}{l} f( \pm 1) = f^' ( \pm 1) = 0, \\ g( \pm 1) = g^' ( \pm 1) = 0, \\ \end{array}\]and when the conditions of consistency% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qmaeaacaWGNbGaaiikaiaadMhacaGGPaqedmvETj2BSbacfaGa% e8hiaaIaamizaiaadMhacqWFGaaicqWF9aqpcqWFGaaidaWdXaqaai% aadMhacaWGNbGaaiikaiaadMhacaGGPaGae8hiaaIaamizaiaadMha% cqWFGaaicqGH9aqpcqWFGaaicaaIWaaaleaacqWFsislcqWFXaqmae% aacqWFXaqma0Gaey4kIipaaSqaaiabgkHiTiaaigdaaeaacaaIXaaa% niabgUIiYdaaaa!5A1B!\[\int_{ - 1}^1 {g(y) dy = \int_{ - 1}^1 {yg(y) dy = 0} } \]are not satisfied.The present completeness proof thus answers questions raised recently (in the mathematically equivalent context of Stokes flow) by Joseph [3], and Joseph and Sturges [5], who showed that if the side conditions (A), (B) are relaxed then the corresponding eigenfunction series may still converge; but they left open the more difficult question of whether these series still converge to the data.The method of proof used here also succeeds in proving a corresponding completeness theorem for the Williams eigenfunctions for the wedge with the data.% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaadaabciqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaa% daqadiqaamaalaaabaGaaGymaaqaaiaadkhaaaqedmvETj2BSbacfi% Gae8NXdygacaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaamOCaiab% g2da9iaaigdaaeqaaGqbaOGae4hiaaIaeyypa0Jae4hiaaIaamOzai% aacIcacqaH4oqCcaGGPaGaaiilaaqaamaaeiGabaWaaSaaaeaacqGH% ciITdaahaaWcbeqaaiaaikdaaaGccqaHgpGzaeaacqGHciITcqaH4o% qCdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaceaadaWcaaqaaiaaigda% aeaacaWGYbaaaiab-z8aMbGaayjkaiaawMcaaaGaayjcSdWaaSbaaS% qaaiaadkhacqGH9aqpcaaIXaaabeaakiab+bcaGiabg2da9iab+bca% GiaadEgacaGGOaGaeqiUdeNaaiykaiaacYcaaaaa!6B9C!\[\begin{array}{l} \left. {\frac{\partial }{{\partial r}}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = f(\theta ), \\ \left. {\frac{{\partial ^2 \phi }}{{\partial \theta ^2 }}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = g(\theta ), \\ \end{array}\]prescribed on –<<, (where 2 is the wedge angle).Department of Mathematics, University of ManchesterOn leave of absence at the University of British Columbia, Vancouver, B.C. Canada, during 1977–79. This work was supported in part by N.R.C. grants Nos. A 9259 and A9117.  相似文献   

5.
The dynamic stability properties of a pre-stressed incompressible elastic plate are studied in this paper with respect to perturbations in the form of one near-neutral mode and two non-neutral modes interacting resonantly. The pre-stresses are assumed to be an all-round pressure. With the aid of a novel derivation procedure, the evolution equations governing the scaled amplitudes of the three modes are found to be given by % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaCa% aaleqabaGaaGOmaaaakiaadgeadaWgaaWcbaGaaGymaaqabaGccaGG% VaGaamizamaaBaaaleaacqaHepaDdaahaaadbeqaaiaaikdaaaaale% qaaOGaeyypa0JaeyOeI0Iaam4yamaaBaaaleaacaaIWaaabeaakiaa% dgeadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGJbWaaSbaaSqaai% aaigdaaeqaaOGaaiiFaiaadgeadaWgaaWcbaGaaGymaaqabaGccaGG% 8bWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyAaiabeo7aNnaaBa% aaleaacaaIXaaabeaakiqadgeagaqeamaaBaaaleaacaaIYaaabeaa% kiqadgeagaqeamaaBaaaleaacaaIZaaabeaaaaa!5308!\[d^2 A_1 /d_{\tau ^2 } = - c_0 A_1 - c_1 |A_1 |^2 - i\gamma _1 \bar A_2 \bar A_3 \], % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadg% eadaWgaaWcbaGaaGOmaaqabaGccaGGVaGaamizaiabes8a0jabg2da% 9iabeo7aNnaaBaaaleaacaaIYaaabeaakiqadgeagaqeamaaBaaale% aacaaIXaaabeaakiqadgeagaqeamaaBaaaleaacaaIZaaabeaaaaa!4324!\[dA_2 /d\tau = \gamma _2 \bar A_1 \bar A_3 \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadg% eadaWgaaWcbaGaaG4maaqabaGccaGGVaGaamizaiabes8a0jabg2da% 9iabeo7aNnaaBaaaleaacaaIZaaabeaakiqadgeagaqeamaaBaaale% aacaaIXaaabeaakiqadgeagaqeamaaBaaaleaacaaIYaaabeaaaaa!4325!\[dA_3 /d\tau = \gamma _3 \bar A_1 \bar A_2 \], where a bar denotes complex conjugation, is a slow time variable and c 0, c 1, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaaigdaaeqaaaaa!387B!\[\gamma _1 \], % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaaikdaaeqaaaaa!387C!\[\gamma _2 \], % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS% baaSqaaiaaiodaaeqaaaaa!387D!\[\gamma _3 \] are real constants. These equations are solved exactly for the special case when A 2 and A 3 have constant amplitudes but time-dependent phases. A series of new post-buckling states, which does not exist when the perturbation is monochromatic, are found. We show that two nonneutral modes can interact resonantly to produce a much larger near-neutral mode, and in particular, two O() non-neutral modes may induce a much larger % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4taiaacI% cacqaH1oqzdaahaaWcbeqaamaalyaabaGaaGOmaaqaaiaaiodaaaaa% aOGaaiykaaaa!3B87!\[O(\varepsilon ^{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} )\] oscillation or static post-buckling state. In this sense, resonant-triad interaction is a powerful mechanism in producing high levels of strain and stress in a pre-stressed elastic plate.  相似文献   

6.
The elliptic boundary value problem % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGHsi% slcqGHuoarcaWG1bGaeyypa0dccaGae8hiaaIaaGymaiab-bcaGiab% -bcaGiab-bcaGiaabMgacaqGUbGaaeiiaiabfM6axjaabYcaaeaaae% aacaWG1bGaeyypa0JaaGimaiab-bcaGiab-bcaGiab-bcaGiaab+ga% caqGUbGaaeiiaiabgkGi2kabfM6axjaabYcaaaaa!4E11!\[\begin{gathered}- \Delta u = 1 {\text{in }}\Omega {\text{,}} \hfill \\\hfill \\u = 0 {\text{on }}\partial \Omega {\text{,}} \hfill \\\end{gathered}\]is considered. The Saint Venant's conjecture for convex plane domains , having symmetry about two orthogonal axes, is that the maximum of |u| occurs only at the points on which are nearest to the origin. G. Sweers constructed one such domain and claimed that either the conjecture fails for or for ={(x, y);u(x, y) >}, which again is convex. We give a totally different proof of this claim. Our proof brings out clearly the reason for the failure of the conjecture and also allows us to construct many more such domains.  相似文献   

7.
The limit cycle of a class of strongly nonlinear oscillation equations of the form % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqadwhagaWaaiabgUcaRmXvP5wqonvsaeHbbjxAHXgiofMCY92D% aGqbciab-DgaNjab-HcaOiaadwhacqWFPaqkcqWF9aqpcqaH1oqzca% WGMbGaaiikaiaadwhacaGGSaGabmyDayaacaGaaiykaaaa!50B8!\[\ddot u + g(u) = \varepsilon f(u,\dot u)\] is investigated by means of a modified version of the KBM method, where is a positive small parameter. The advantage of our method is its straightforwardness and effectiveness, which is suitable for the above equation, where g(u) need not be restricted to an odd function of u, provided that the reduced equation, corresponding to =0, has a periodic solution. A specific example is presented to demonstrate the validity and accuracy of our 09 method by comparing our results with numerical ones, which are in good agreement with each other even for relatively large .  相似文献   

8.
Bifurcation scenarios of the noisy duffing-van der pol oscillator   总被引:2,自引:0,他引:2  
This paper presents a numerical study of the bifurcation behavior of the noisy Duffing-van der Pol oscillator% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuGacuWF4baEgaWaaiaaiccacqWF9aqpcaaIGaGaaiik% aerbtLhBMfwzUbacgiGaa4xSdiaaiccacqGHRaWkcaaIGaGaeq4Wdm% 3ccaaIXaGcceqGxbGbaiaaliaaigdakiGacMcacqWF4baEcaaIGaGa% ci4kaiaaiccacqaHYoGycuWF4baEgaGaaiaaiccacqGHsislcaaIGa% Gae8hEaG3aaWbaaSqabeaacaaIZaaaaOGaaGiiaiabgkHiTiaaicca% cqWF4baEdaahaaWcbeqaaiaaikdaaaGccuWF4baEgaGaaiaaiccaci% GGRaGaaGiiaiabeo8aZTGaaGOmaOGabe4vayaacaGaaeOmaiaabYca% aaa!5F62!\[\ddot x = (\alpha + \sigma 1{\rm{\dot W}}1)x + \beta \dot x - x^3 - x^2 \dot x + \sigma 2{\rm{\dot W2,}}\]where , are bifurcation parameters, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaaceqGxbGbaiaali% aaigdakiqabEfagaGaaSGaciOmaaaa!35B4!\[{\rm{\dot W}}1{\rm{\dot W}}2\] are independent white noise processes, and 1, 2 are intensity parameters. A stochastic bifurcation here means (a) the qualitative change of stationary measures or (b) the change of stability of invariant measures and the occurrence of new invariant measures for the random dynamical system generated by (1). The first type of bifurcation can be observed when studying the solution of the Fokker-Planck equation, this stationary measure is a quantity corresponding to the one-point motion. More generally, if one is interested in the simultaneous motion of n points (n1) forward and backward in time, then the second type of bifurcation arises naturally, capturing all the stochastic dynamics of (1). Based on the numerical results, we propose definitions of the stochastic pitchfork and Hopf bifurcations.  相似文献   

9.
A-HIGH-ORDERACCURACYEXPLICITDIFFERENCESCHEMEFORSOLVINGTHEEQUATIONOFTWO-DIMENSIONALPARABOLICTYPEMaMingshu(马明书)(ReceivedJune2,1...  相似文献   

10.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

11.
THEPROOFOFFERMAT'SLASTTHEOREMWongChiaho(汪家訸)(ReceivedApril10,1995)Abstract:(i)Insteadofx ̄n+y ̄n=z ̄n,weuseasthegeneralequationo...  相似文献   

12.
A sharp uniqueness class is determined for the traction problem of linear elastostatics in exterior domains and in the half space. In particular, it is shown that this problem has a most one solution in the class of all vector fields u such that either u=o(r) or % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafy4bIeTbaK% aaaaa!3782!\[\hat \nabla \]u=o(1), as r+, with w and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafy4bIeTbaK% aaaaa!3782!\[\hat \nabla \]u respectively rigid displacement and symmetric part of u.  相似文献   

13.
Chen  S. H.  Cheung  Y. K. 《Nonlinear dynamics》1997,12(3):199-213
An elliptic Lindstedt--Poincaré (L--P) method is presented for the steady-state analysis of strongly non-linear oscillators of the form , in which the Jacobian elliptic functions are employed instead of the usual circular functions in the classical L--P perturbation procedure. This method can be viewed as a generalization of the L--P method. As an application of this method, three types of the generalized Van der Pol equation with are studied in detail.  相似文献   

14.
For every ${\varepsilon > 0}$ , we consider the Green’s matrix ${G_{\varepsilon}(x, y)}$ of the Stokes equations describing the motion of incompressible fluids in a bounded domain ${\Omega_{\varepsilon} \subset \mathbb{R}^d}$ , which is a family of perturbation of domains from ${\Omega\equiv \Omega_0}$ with the smooth boundary ${\partial\Omega}$ . Assuming the volume preserving property, that is, ${\mbox{vol.}\Omega_{\varepsilon} = \mbox{vol.}\Omega}$ for all ${\varepsilon > 0}$ , we give an explicit representation formula for ${\delta G(x, y) \equiv \lim_{\varepsilon\to +0}\varepsilon^{-1}(G_{\varepsilon}(x, y) - G_0(x, y))}$ in terms of the boundary integral on ${\partial \Omega}$ of ${G_0(x, y)}$ . Our result may be regarded as a classical Hadamard variational formula for the Green’s functions of the elliptic boundary value problems.  相似文献   

15.
In the present paper the radiation conditions of the Sommerfield type for a linear homogeneous and isotropic micropolar elasticity are discussed. A regular solution (u, ) of the fundamental system of field equations in an infinite domain has been defined using the radiation conditions for % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaacIcacaWG1bWaaSbaaSqaaiaacIcacaWG% WbGaaiykaaqabaGccaGGSaGaey4kaSIaeqy1dO2aaSbaaSqaaiaacI% cacaWGWbGaaiykaaqabaGccaGGPaaaaa!4834!\[(u_{(p)} , + \varphi _{(p)} )\] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaacIcacaWG1bWaaSbaaSqaaiaacIcacaWG% ZbGaaiykaaqabaGccaGGSaGaey4kaSIaeqy1dO2aaSbaaSqaaiaacI% cacaWGZbGaaiykaaqabaGccaGGPaaaaa!483A!\[(u_{(s)} , + \varphi _{(s)} )\], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaadwhacqGH9aqpcaWG1bWaaSbaaSqaaiaa% cIcacaWGWbGaaiykaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaacI% cacaWGZbGaaiykaaqabaGccaGGSaGaaeiiaiabgEGirlabgEna0kaa% dwhadaWgaaWcbaGaaiikaiaadchacaGGPaaabeaakiabg2da9iaaic% dacaGGSaGaaeiiaiabgEGirhrbmv3yPrwyGm0BUn3BSvgaiyGacaWF% 1bWaaSbaaSqaaGqaciaa+HcacaGFZbGaa4xkaaqabaGccqGH9aqpca% aIWaGaaiilaiaabccacqaHvpGAcqGH9aqpcqaHvpGAdaWgaaWcbaGa% aiikaiaadchacaGGPaaabeaakiabgUcaRiabew9aQnaaBaaaleaaca% GGOaGaam4CaiaacMcaaeqaaOGaaiilaiaabccacqGHhis0cqGHxdaT% cqaHvpGAdaWgaaWcbaGaaiikaiaadchacaGGPaaabeaakiabg2da9i% aaicdacaGGSaGaaeiiaiabgEGirlabew9aQnaaBaaaleaacaqGOaGa% ae4CaiaabMcaaeqaaOGaeyypa0JaaGimaaaa!809B!\[u = u_{(p)} + u_{(s)} ,{\text{ }}\nabla \times u_{(p)} = 0,{\text{ }}\nabla u_{(s)} = 0,{\text{ }}\varphi = \varphi _{(p)} + \varphi _{(s)} ,{\text{ }}\nabla \times \varphi _{(p)} = 0,{\text{ }}\nabla \varphi _{{\text{(s)}}} = 0\], and formulae of the Betti type for an infinite domain with a cavity have been derived.
Zusammenfassung Betrachtet werden die Ausstrahlungsbedingungen der Sommerfeldschen Art für lineare homogene mikropolare Elastizitätstheorie. Die reguläre Lösung (u, ) der grundlegenden Gleichungen für einen unendlichen Raum wird mit Hilfe der Bedingungen für Paare % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaacIcacaWG1bWaaSbaaSqaaiaacIcacaWG% WbGaaiykaaqabaGccaGGSaGaey4kaSIaeqy1dO2aaSbaaSqaaiaacI% cacaWGWbGaaiykaaqabaGccaGGPaaaaa!4834!\[(u_{(p)} , + \varphi _{(p)} )\] und % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaacIcacaWG1bWaaSbaaSqaaiaacIcacaWG% ZbGaaiykaaqabaGccaGGSaGaey4kaSIaeqy1dO2aaSbaaSqaaiaacI% cacaWGZbGaaiykaaqabaGccaGGPaaaaa!483A!\[(u_{(s)} , + \varphi _{(s)} )\] definiert, wobei % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbnL2yY9% 2CVzgDGmvyUnhitvMCPzgarmWu51MyVXgaruWqVvNCPvMCG4uz3bqe% fqvATv2CG4uz3bIuV1wyUbqee0evGueE0jxyaibaieYlf9irVeeu0d% Xdh9vqqj-hEeeu0xXdbba9frFf0-OqFfea0dXdd9vqaq-JfrVkFHe9% pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca% qabeaadaabauaaaOqaaiaadwhacqGH9aqpcaWG1bWaaSbaaSqaaiaa% cIcacaWGWbGaaiykaaqabaGccqGHRaWkcaWG1bWaaSbaaSqaaiaacI% cacaWGZbGaaiykaaqabaGccaGGSaGaaeiiaiabgEGirlabgEna0kaa% dwhadaWgaaWcbaGaaiikaiaadchacaGGPaaabeaakiabg2da9iaaic% dacaGGSaGaaeiiaiabgEGirhrbmv3yPrwyGm0BUn3BSvgaiyGacaWF% 1bWaaSbaaSqaaGqaciaa+HcacaGFZbGaa4xkaaqabaGccqGH9aqpca% aIWaGaaiilaiaabccacqaHvpGAcqGH9aqpcqaHvpGAdaWgaaWcbaGa% aiikaiaadchacaGGPaaabeaakiabgUcaRiabew9aQnaaBaaaleaaca% GGOaGaam4CaiaacMcaaeqaaOGaaiilaiaabccacqGHhis0cqGHxdaT% cqaHvpGAdaWgaaWcbaGaaiikaiaadchacaGGPaaabeaakiabg2da9i% aaicdacaGGSaGaaeiiaiabgEGirlabew9aQnaaBaaaleaacaqGOaGa% ae4CaiaabMcaaeqaaOGaeyypa0JaaGimaaaa!809B!\[u = u_{(p)} + u_{(s)} ,{\text{ }}\nabla \times u_{(p)} = 0,{\text{ }}\nabla u_{(s)} = 0,{\text{ }}\varphi = \varphi _{(p)} + \varphi _{(s)} ,{\text{ }}\nabla \times \varphi _{(p)} = 0,{\text{ }}\nabla \varphi _{{\text{(s)}}} = 0\] ist. Es wird gezeigt, dass derartige reguläre Lösung mit Hilfe der Formel Bettischer Art für einem unendlichen Raum mit einem Hohlraum dargestellt werden kann.
  相似文献   

16.
In this paper we study the limit as \(\varepsilon \rightarrow 0\) of the singularly perturbed second order equation \(\varepsilon ^2 \ddot{u}_\varepsilon + \nabla _{\!x} V(t,u_\varepsilon (t))=0\), where V(tx) is a potential. We assume that \(u_0(t)\) is one of its equilibrium points such that \(\nabla _{\!x}V(t,u_0(t))=0\) and \(\nabla _{\!x}^2V(t,u_0(t))>0\). We find that, under suitable initial data, the solutions \(u_\varepsilon \) converge uniformly to \(u_0\), by imposing mild hypotheses on V. A counterexample shows that they cannot be weakened.  相似文献   

17.
A criterion to predict bifurcation of homoclinic orbits instrongly nonlinear self-excited one-degree-of-freedom oscillator
is presented. TheLindstedt–Poincaré perturbation method is combined formally withthe Jacobian elliptic functions to determine an approximation of thelimit cycles near homoclinicity. We then apply a criterion forpredicting homoclinic orbits, based on the collision of the bifurcatinglimit cycle with the saddle equilibrium. In particular we show that thiscriterion leads to the same results, formally and to leading order, asthe standard Melnikov technique. Explicit applications of this criterionto quadratic or cubic nonlinearities f(x) are included.  相似文献   

18.
The multiaxial elongational rheometer equipped with rotary clamps is modified such that in addition to simple, equibiaxial and multiaxial elongations also tests with new modes of elongation can be performed. As an example, polyisobutylene is elongated with a ratio of the principal strain rates of and magnitudes of the maximum strain rate , 0.04 and 0.08 s–1. As a test result, the first elongational viscosityµ 1 (t) is obtained which follows closely the linear viscoelastic shear viscosity . In contrast, the second elongational viscosityµ 2 (t) remains below . By means of a further modification of the rheometer, the test modes can be varied during the deformation period. This allows one to investigate the influence of a well-defined rheological pre-history on the following rheological behaviour. As an example a variation ofm = 0.5 2 was performed. The measured normal-stress differences superpose from the single steps of deformation similar to the linear viscoelastic prediction.Dedicated to Prof. F. R. Schwarzl on the occasion of his 60th birthday  相似文献   

19.
The spatio-temporal characteristics of the wall-pressure fluctuations in separated and reattaching flows over a backward-facing step were investigated through pressure-velocity joint measurements carried out using multiple-arrayed microphones and split-film probes. A spoke-wheel-type wake generator was installed upstream of the backward-facing step. The flow structure at the effective forcing frequency (St f=0.2) was found to be well organized in terms of wall pressure spectrum, cross-correlation, wavenumber-frequency spectrum, and wavelet auto-correlation. Introduction of the unsteady wake (St f=0.2) reduced the reattachment length by 10%. In addition, the unsteady wake enhanced the turbulence intensity near the separation edge and, as a consequence, enhanced the quadrupole sound sources; however, the turbulence intensity near the reattachment region was weakened and the overall flow noise was attenuated. The greater organization of the flow structure induced by the unsteady wake led to a weakening of the dipole sound sources, which are the dominant sound sources in this system. The dipole sound sources generated by wall pressure fluctuations were calculated using Curles integral formula.Abbreviations AR Aspect ratio - SBF Spatial box filtering Roman symbols C p Wall pressure fluctuation coefficient, p/0.5U 2 - H Step height of backward-facing step (mm) - H s Shape factor (H s = */) - R s Distance from acoustic source point to observation point (m) - Re H Reynolds number, U H/ - St The reduced frequency, fH/U - St f Normalized forcing frequency by unsteady wake, f p H/U - T Vortex shedding period (s) - U Free-stream velocity (m/s) - a Speed of sound (m/s) - f Frequency (Hz) - f p Wake passing frequency (Hz) - k Turbulent kinetic energy (m2/s2) - k x Streamwise wave number (1/m) - k z Spanwise wave number (1/m) - l j Cosine of angle - p Instantaneous wall pressure (Pa) - p rms Root-mean-square of wall pressure (Pa) - p SBF Spatial box filtered wall pressure (Pa) - p d Dipole sound source (Pa) - p w Conditionally-averaged wall pressure (Pa) - q Dynamic pressure, 0.5U 2 (Pa) - r Distance from origin to observation point (mm) - u c Convection velocity (m/s) - umax Root-mean-square of streamwise velocity (m/s) - x R Time-mean reattachment length (mm) Greek symbols p Forward-flow time fraction - Auto-correlation of pressure at x 0 - Two-dimensional cross-correlation of pressure with streamwise separation interval , spanwise separation interval , and time delay , at (x 0, z 0) - Boundary layer thickness (mm, 99%) - * Displacement thickness (mm, ) - ij Kroneckers delta function - Phase angle (°) - Wavelength (mm) - Momentum thickness (mm, ) - Angle between vertical axis and observation point (°) - Density (kg/m3) - Time delay (s) - Streamwise separation interval (m) - Spanwise separation interval (m) - p (f; x 0) Autospectrum of pressure measured at x 0 (Pa2 s) - pp (, ; x 0) Streamwise cross spectrum of pressure at x 0 (Pa2 s) - pp (, , ; x 0, z 0) Streamwise and spanwise cross spectrum of pressure at (x 0, z 0) (Pa2 s) - pp (kx, ; x 0) Streamwise wavenumber-frequency spectrum of pressure at x 0 (Pa2 s) - pp (kx, kz, ; x 0, z 0) Two-dimensional wavenumber-frequency spectrum of pressure at (x 0, z 0) (Pa2 s)  相似文献   

20.
A homogeneous, isotropic plate has free faces and is stretched by tractions around its edge which are symmetrical about the mid-plane, but are otherwise generally distributed. We give a rigorous proof that the most general state of stress % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaaqabaaaaa!3FFD!\[\tau _{ij} \] which can be generated in the plate can be decomposed in the form% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaBaaaleaacaWGPbGaamOAaiabg2da9aqabaGccqaH% epaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaam4uaaaakiabgU% caRiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaGccqGH% RaWkcqaHepaDdaqhaaWcbaGaamyAaiaadQgaaeaacaWGqbGaamOraa% aaaaa!5277!\[\tau _{ij = } \tau _{ij}^{PS} + \tau _{ij}^S + \tau _{ij}^{PF} \] where (i) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGtbaa% aaaa!41AB!\[\tau _{ij}^{PS} \] is an (exact) plane stress state, (ii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] is a shear state, and (iii) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] is a Papkovich-Fadle state, which is a 3-dimensional generalisation of the Papkovich-Fadle eigenfunctions for the elastic strip.Furthermore, we prove that, as the plate thickness h0, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadofaaaaaaa!40D6!\[\tau _{ij}^S \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabes8a0naaDaaaleaacaWGPbGaamOAaaqaaiaadcfacaWGgbaa% aaaa!419E!\[\tau _{ij}^{PF} \] are exponentially small at points inside the plate and represent edge effects of thickness O(h).Corresponding results are also given for the case of plate bending, in which the applied tractions around the plate edge are anti-symmetrical about the mid-plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号