首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Nanoparticles combining a hydrophobically modified dextran core and a polysaccharide surface coverage were elaborated. Their suitability for applications like drug delivery was evaluated. The selected polysaccharide, dextran, was chemically modified by the covalent attachment of hydrocarbon groups (aliphatic or aromatic) via the formation of ether links. According to the extent of modification, either water-soluble or water-insoluble dextran derivatives were obtained. The latter exhibited solubility in organic solvents like tetrahydrofuran or dichloromethane saturated with water. Water-soluble dextran derivatives were used as polymeric surfactants for the control of nanoparticles surface characteristics. Nanoparticles were prepared either by o/w emulsion or solvent-diffusion methods. The size and surface properties of dextran nanoparticles were correlated to processing conditions. The stability of colloidal suspensions was examined as a function of ionic strength and related to the particle surface characteristics. The redispersability of freeze-dried suspensions without the addition of cryoprotectant was demonstrated. Finally, the degradability of modified dextrans was compared to that of starting dextran, after enzymatic hydrolysis in the presence of dextranase.  相似文献   

2.
This paper is focused on the synthesis and characterization of hydrophobically modified polyelectrolytes and their use as reducing as well as stabilizing agents for the formation of gold nanoparticles. Commercially available poly(acrylic acid) has been hydrophobically modified with various degrees of grafting of butylamine introduced randomly along the chain. Different analytical methods are performed, i.e., IR and 1H-NMR spectroscopy in combination with elemental analysis to determine the degree of grafting. The modified polymers can successfully be used for the controlled single-step synthesis and stabilization of gold nanoparticles. The process of nanoparticle formation is investigated by means of UV-vis spectroscopy. The size and shape of the particles obtained in the presence of unmodified or modified polyelectrolytes are characterized by dynamic light scattering, zeta potential measurements and transmission electron microscopy. The polyelectrolytes were involved in the crystallization process of the nanoparticles, and in the presence of hydrophobic microdomains at the particle surface, a better stabilization at higher temperature can be observed.  相似文献   

3.
The process of aggregation of conjugates of dextran hydrophobically modified by sterically hindered phenols in an aqueous medium was studied by dynamic light scattering, transmission electron microscopy, atomic force microscopy, and fluorescent spectroscopy. It was found that, in solutions of dextran and related conjugates, individual molecules and their aggregates are present. The concentration, size, and shape of aggregates, as well as aggregation number, are determined by the degree of substitution of glycoside groups of dextran. It was shown that the critical concentration of conjugate aggregation decreases as the degree of substitution of dextran molecules increases.  相似文献   

4.
Polysaccharide-covered polyester nanoparticles were prepared using the emulsion/solvent evaporation process. The core of the nanoparticles was made either of PLA or of a blend of polylactide and polylactide-grafted dextran copolymer in various proportions. The surface of the nanoparticles was covered by dextran chains via the use of water-soluble polylactide-grafted dextrans as polymeric stabilizers during the emulsification step. The characteristics of the nanoparticles (size, surface coverage, thickness of superficial layer, colloidal stability) were correlated to the structural parameters (length and number of polylactide grafts) of the copolymers as well as to their surface active properties. The complete biodegradability of the nanoparticles was evaluated by considering the rate of hydrolysis of polylactide grafts in phosphate buffer and the rate of enzymatic degradation of dextran backbone by dextranase.  相似文献   

5.

Silver nanoparticles have been prepared in a polyacrylamide (PA) matrix, as well as in the presence of a hyperbranched polyamine/polyacrylamide combined system (HB‐PA) by using a reductive technique. The stability of colloidal solution of silver nanoparticles is higher (5 months) in combined matrix compared to PA alone (4 months). The prepared silver nanoparticles were characterized by different spectroscopic and analytical techniques such as FTIR, UV‐visible, X‐ray diffraction, TEM etc. TEM and XRD studies confirmed the formation of well‐dispersed nanoparticles with an average size of 9.91 nm and 8.5 nm for PA and HB‐PA matrices, respectively. The antibacterial activity of silver nanoparticles in both the matrices was tested against Bacillus Subtilis bacteria by using the diffusion disc technique. The result shows that the antibacterial activity of the active agent, Ag(0) is a little higher in the case of HB‐PA system. The dielectric constant of the matrices decreases with an increase in frequency, but the values increase with an increase of concentration of silver nanoparticles in PA matrix.  相似文献   

6.
HAuCl(4) in aqueous solution was extracted to toluene or chloroform using a hydrophobically modified poly(amidoamine) dendrimer. Then, by reduction of Au(3+) ions with dimethylamineborane, gold nanoparticles in the size range of 2-4 nm were obtained in toluene or chloroform. It is suggested that gold nanoparticles are encapsulated by the dendrimer. Copyright 2000 Academic Press.  相似文献   

7.
合成了一种疏水缔合水溶性聚丙烯酰胺共聚物,使用荧光光谱法并结合紫外及流变性实验,对制备的疏水缔合水溶性聚丙烯酰胺共聚物在水溶液中形成疏水微区、超分子聚集体及空间网络结构进行了研究,并用扫描电子显微镜证实了溶液中网络结构的存在.  相似文献   

8.
New nanoassemblies were instantaneously prepared by mixing two aqueous solutions, one containing a beta-cyclodextrin polymer (pbetaCD), and the other a hydrophobically modified by alkyl chains dextran (MD). The formation mechanism and the inner structure of these nanoassemblies were analysed using surface tension measurements and (1)H NMR spectroscopy. The effect of a hydrophobic guest molecule, such as benzophenone (BZ), on the formation and stability of the nanoassemblies was also evaluated. MD exhibited the typical behaviour of a soluble amphiphilic molecule and adsorbed at the air/water interface. Whereas the injection of native beta-CDs in the solution beneath the adsorbed MD monolayer did not produce any change in the surface tension, that of the pbetaCD resulted in an increase in the surface tension, indicating the desorption of the polymer from the interface. This result accounts for a cooperative effect of beta-CDs linked together in the pbetaCD polymer on dextran desorption. The presence of benzophenone in the system hindered the sequestration of dextran alkyl moieties by beta-CD in the polymer without impeding the formation of associative nanoassemblies of 100-200 nm. (1)H NMR investigations demonstrated that, in the BZ-loaded nanoassemblies, the hydrophobic molecule was mainly located into the cyclodextrin cavities.  相似文献   

9.
主体环糊精聚合物(β-CDE)与客体疏水改性丙烯酰胺共聚物P(AM/POEA)构成超分子结构的高分子识别体系. 这种客体聚合物是含有少量疏水体(xPOEA<0.01)的水溶性聚合物, NMR测定结果表明β-CDE和P(AM/POEA)的主客体相互作用是通过环糊精空腔和疏水体POEA形成包结络合物进行的. 在P(AM/POEA)聚合物水溶液中加入β-CDE, 由于主客体聚合物相互作用出现粘度的大幅上升, 增粘的幅度可通过改变聚合物浓度和疏水体含量来调节, 同时对盐浓度和温度的影响也进行了研究. 通过透射电镜直观观察的结果表明, 此类缔合聚合物体系的主客体相互作用生成实心球状多分子聚集体.  相似文献   

10.
Summary: Applying a dialysis process, new nanoparticles based on well‐defined dextran esters of furan‐2‐carboxylic‐ and pyroglutamic acids were prepared, which can undergo cross‐linking by UV irradiation. The highly functionalized products (total DS > 2) avoid the collapse of nanoparticles due to the prevention of hydrogen bond formation. The major fraction of the dextran ester nanospheres exhibits narrow size distribution down to 250 nm as mean diameter investigated by SEM.

SEM images of dextran furoate pyroglutamate nanospheres.  相似文献   


11.
疏水改性聚丙烯酰胺的荧光研究   总被引:5,自引:0,他引:5  
使用荧光探针技术,跟踪了疏水改性聚丙烯酰胺(HMPAM)在溶液中的变化过程,对HMPAM在溶液中的聚集行为进行了研究。同时也对部分水解聚丙烯酰胺(HPAM)作了对比研究。发现HMPAM在溶液中具有独特的变化规律:由疏水缔合形成超分子聚集体,再由超分子聚集体形成布满整个溶液空间网络结构的过程。并使用粘度法对其宏观流变性能进行了研究,发现两种手段所得的结果具有较好的对应关系。  相似文献   

12.
Silver nanoparticles are of high importance due to their electrical, magnetic, and optical properties, as well as catalytic and biocidal activity that are superior to the bulk silver and other metals. To prepare certain devices, generally, silver is incorporated into a matrix either as preformed or in situ‐generated particles. Silver nanoparticles were generated in situ into a silicone matrix formed by cohydrolysis of the mixture of silanes, each of them having a certain role: dimethyldiethoxysilane (DMDES) as a precursor for highly flexible polydimethylsiloxane, methyltriethoxysilane (MTES) as a cross‐linker highly compatible with polydimethylsiloxane, and 3‐aminopropyltriethoxysilane as a stabilizer, since it can readily complex to silver atoms through its amine functionality. Dimethylformamide (DMF) was used as a solvent for the silver nitrate and reducing agent. The samples were investigated both in sol state and as aged coating films deposited on glass substrate. The complexation of the silver and the matrix formation were emphasized by FTIR. The size of the formed silicone particles encapsulating silver was estimated by dynamic light scattering (DLS) (about 100 nm) in sol and by AFM in film (about 90 nm). The formation of the clusters or nanoparticles depending on the ratio between the reducing and complexing agents was evidenced by UV–Vis absorption spectra. Thus, it would create conditions to stop and isolate clusters at the desired size by precise control of the experimental conditions. The composites could be used alone as antibacterial‐coating materials but also, porous silica having incorporated silver clusters with potential applicability in catalysis may result after their calcination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Synthesis of TiO2 nanoparticles using microorganisms   总被引:1,自引:1,他引:0  
A low-cost green and reproducible microbes (Lactobacillus sp. and Sachharomyces cerevisae) mediated biosynthesis of TiO2 nanoparticles is reported. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of TiO2 nanoparticles. Individual nanoparticles as well as a few aggregate having the size of 8–35 nm are found. Concentric Scherrer rings in the selected area electron diffraction pattern indicated that the nanoparticles are having all possible orientations. A possible involved mechanism for the biosynthesis of nano-TiO2 has also been proposed in which pH as well as partial pressure of gaseous hydrogen (rH2) or redox potential of the culture solution seems to play an important role in the process.  相似文献   

14.
聚乙烯吡咯烷酮包裹核壳型Fe_3O_4/Au纳米粒子的制备   总被引:1,自引:1,他引:0  
采用改进的Polyol合成法,以聚乙烯吡咯烷酮(PVP)为表面活性剂制备PVP包裹的单分散的Fe3O4/Au纳米粒子.透射电镜(TEM)和X射线衍射(XRD)分析证实了Fe3O4/Au的核壳型纳米结构,并确定了纳米粒子的尺寸大小和分布.UV-Vis测定显示了所制备的纳米粒子具有光学活性,而振动样品磁强计(VSM)测量显示纳米粒子具有优异的磁化率.  相似文献   

15.
Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2‐methylene‐1,3‐dioxepane (MDO) using a macro‐xanthate CTA, poly(N‐vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)‐b‐poly(MDO‐co‐VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self‐assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro‐CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2699–2710  相似文献   

16.
Abstract

The preparation of fairly monodisperse nanoparticles of zinc sulfide, cadmium sulfide, and lead chromate using a polymer–surfactant gel matrix as the template to resist particle clustering is been described. A hydrophobically modified polymer (chloride salt of N,N′‐dimethyl‐N‐methyl derivative of hydroxymethyl cellulose, JR 400) and a surfactant (sodium dodecyl sulfate, SDS) have been used to form the gel matrix. The nanodispersions formed in the gel at different precursor concentrations have been characterized by the TEM and SEM. Their UV‐visible and fluorescence spectra have been measured and analyzed. The band gaps and other characteristic properties of the nanomaterials have been estimated from the spectral data. A procedure for isolation of the products from the gel is described.  相似文献   

17.
In nonequimolar solutions of a cationic and an anionic surfactant, vesicles bearing a net charge can be spontaneously formed and apparently exist as thermodynamically stable aggregates. These vesicles can associate strongly with polymers in solution by means of hydrophobic and/or electrostatic interactions. In the current work, we have investigated the rheological and microstructural properties of mixtures of cationic polyelectrolytes and net anionic sodium dodecyl sulfate/didodecyldimethylammonium bromide vesicles. The polyelectrolytes consist of two cationic cellulose derivatives with different charge densities; the lowest charge density polymer contains also hydrophobic grafts, with the number of charges equal to the number of grafts. For both systems, polymer-vesicle association leads to a major increase in viscosity and to gel-like behavior, but the viscosity effects are more pronounced for the less charged, hydrophobically modified polymer. Evaluation of the frequency dependence of the storage and loss moduli for the two systems shows further differences in behavior: while the more long-lived cross-links occur for the more highly charged hydrophilic polymer, the number of cross-links is higher for the hydrophobically modified polymer. Microstructure studies by cryogenic transmission electron microscopy indicate that the two polymers affect the vesicle stability in different ways. With the hydrophobically modified polymer, the aggregates remain largely in the form of globular vesicles and faceted vesicles (polygon-shaped vesicles with largely planar regions). For the hydrophilic polycation, on the other hand, the surfactant aggregate structure is more extensively modified: first, the vesicles change from a globular to a faceted shape; second, there is opening of the bilayers leading to holey vesicles and ultimately to considerable vesicle disruption leading to planar bilayer, disklike aggregates. The faceted shape is tentatively attributed to a crystallization of the surfactant film in the vesicles. It is inferred that a hydrophobically modified polyion with relatively low charge density can better stabilize vesicles due to formation of molecularly mixed aggregates, while a hydrophilic polyion with relatively high charge density associates so strongly to the surfactant films, due to strong electrostatic interactions, that the vesicles are more perturbed and even disrupted.  相似文献   

18.
We synthesized and characterized a series of new polymers-hydrophobically modified cationic polysaccharides-based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-alkylammonium chloride groups randomly distributed along the polymer backbone. These polymers are good candidates for studying the hydrophobic effect on polymer/surfactant association. In previous papers we reported their interactions with oppositely charged surfactants. For further insight into the relative importance of the hydrophobic interaction in the association process now we studied the thermodynamics of the interaction of these hydrophobically modified polymers with surfactants of the same charge (DMRX/CnTAC) by isothermal titration calorimetry (ITC). In order to try to discriminate the solution behavior of these polymer/surfactant systems, we analyzed separately the interaction of unmodified dextran with ionic surfactants and the interactions between the corresponding cationic surfactants. The interaction enthalpies for DMRX/CnTAC systems were derived from a proposed thermodynamic model with equations that describe the polymer-surfactant interactions. The thermodynamic parameters for the DMRX/CnTAC aggregation process as well as surfactant micellization in the presence of the polymer were also calculated. From all the results we were able to ascertain the effect on the interactions of changing the alkyl chain length of the polyelectrolyte pendant groups or the surfactant. The importance of the polymer aggregation state on the mechanism of interaction was also addressed.  相似文献   

19.
A series of hydrophobically modified poly(acrylic acid) gels were prepared by the radical copolymerization of acrylic acid and small amounts of hydrophobic comonomers, 2‐(N‐ethylperfluorooctane‐sulfoamido)ethyl methacrylate and lauryl acrylate, in tert‐butanol. The effects of the fractions and species of hydrophobes on hydrophobic association were determined. The hydrophobic association within the hydrophobically modified gels was proven with measurements of swelling and fluorescence as well as Fourier transform infrared spectroscopy. Fluorocarbon‐modified hydrogels showed stronger hydrophobicity than hydrocarbon‐modified hydrogels. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1236–1244, 2002  相似文献   

20.
Ormosil (organically modified silane) such as n-octyl triethoxy silane has been found to aggregate in the form of normal micelles as well as reverse micelles in which the triethoxy silane moeities are hydrolyzed to form a hydrated silica network while the n-octyl groups are held together through hydrophobic interaction. These nanoparticles are spherical in shape and are nearly monodispersed with an average diameter of below 100 nm. The nanoparticles originating from the micellar aggregate have an hydrophobic core with a layer of the hydrated silica network at the surface. The hydrophobic core can host hydrophobic molecules such as tetraphenyl porphyrin, which is leached out of the particles extremely slowly compared to that in Triton X-100 micelles. The nanoparticles originating from the reverse micelles have a hydrated silica network in the core surrounded by the hydrophobic n-octyl chains on the particle surface. The hydrophilic silica cores of these nanoparticles have been used to encapsulate horseradish peroxidase (HRP) and the enzyme shows its activity and follows Michaelis-Menten kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号