首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, NaYF4 nanocrystals doped with Yb3+ and Er3+ were synthesized in a medium containing polyethylene glycol and citric acid. This nanocrystal presents up-converting green and red emission bands which were simultaneously observed under the excitation of a 980 infrared diode laser. Mainly, the green to red ratio (GRR) of the up-conversion emission of the hexagonal NaYF4 nanocrystals doped with Yb3+ and Er3+ can be finely tuned by changing the content of citric acid to be nearly an arithmetic progression, i.e. 6/4, 5/4, 4/4, and 3/4. The further analysis revealed that citric acid plays a key role in improving the surface crystallinity of NaYF4 nanocrystals doped with Yb3+ and Er3+, to which the achievement of fine controlling on GRR is ascribed.  相似文献   

2.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.  相似文献   

3.
The up-conversion luminescence composite NaYF 4:Er 3+ /TiO 2 is prepared using the sol-gel method.The specimen has good crystallinity and two shapes,i.e.,viereck and round,while the sizes of viereck and round particles are both micron-sized.The TiO 2 has an anatase structure,while the NaYF 4 has a hexagonal phase,which can be hardly obtained through the common sol-gel method.Due to the big particle size and the high crystallinity of pure NaYF 4:Er 3+,the composite has a small specific surface area that is less than Degussa P25 TiO 2.The NaYF 4:Er 3+ /TiO 2 composite shows several emission peaks at 211,237,and 251 nm under the excitation of 388 nm,at 395 nm and 411 nm under the excitation of 500 nm,and at 467,481,492,and 508 nm under the excitation of 570 nm.  相似文献   

4.
以EDTA为络合剂,用水热法合成了Er3+,Tm3+和Yb3+共掺杂的NaYF4纳米晶。XRD和TEM的结果表明:粒径约为30 nm,属于六方晶系。在980 nm半导体激光器激发下,研究了不同Er3+离子掺杂浓度对Tm3+和Er3+离子上转换发光性能的影响,光强与泵浦功率的双对数曲线表明,474,525,539,650 nm的发射均属于双光子过程,408 nm的发射属于三光子过程。讨论了样品的协作敏化和声子辅助共振能量传递的上转换发光机制。  相似文献   

5.
Single‐band green upconversion (UC) with high green purity and color stability is urgently required for plastic recycling and anticounterfeiting. However, it is very difficult to obtain single‐band green emission for benchmark Yb3+/Er3+ activated UC materials (such as NaYF4:Yb3+,Er3+) due to the strong accompanying red UC. Herein, highly efficient and stable single‐band green UC is reported in La2O3:Yb3+/Ho3+ (LYH) microcrystals with record high absolute UC quantum yield (UCQY) of 2.6% for single‐band green UC. LYH yields pure green UC with large and stable intensity ratio, IGreen/IRed ≈ 18. LYH presents not only higher UCQY for a single‐band green UC but also much more pure and stable green UC than the benchmark UC materials such as NaYF4:Yb3+,Er3+ and Gd2O2S:Yb3+,Er3+. These results suggest that the newly developed LYH can, in principle, be promising for anticounterfeiting and plastic recycling. Its proof‐of‐concept is demonstrated as a security label based on a transparent institute logo.  相似文献   

6.
LaF3:Yb3+,Er3+/LaF3 core/shell nanocrystals were successfully synthesized using solvothermal method. The crystal structure, morphology and photoluminescence properties of as-prepared nanocrystals were investigated in detail. XRD patterns show that the obtained LaF3:Yb3+,Er3+ core and LaF3:Yb3+,Er3+/LaF3 core/shell nanocrystals exhibit hexagonal structure. The average particle size is about 9.3 nm and 11.4 nm for core and core/shell nanocrystals, respectively. Compared with LaF3:Yb3+,Er3+ nanocrystals, both the upconversion emission intensity and the lifetime increase in LaF3:Yb3+,Er3+/LaF3 core/shell nanocrystals. The enhancement can be attributed to the LaF3 shell which can eliminate the nonradiative centers on the surface of LaF3:Yb3+,Er3+ nanocrystals.  相似文献   

7.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. These NaYF4:Yb3+, Er3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 (P 123) as structure-directing agent and other materials. The composites can load ibuprofen and release the drug in the phosphate buffer solution (PBS). The composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively. The composites have the mesoporous structure. In addition, the composites emit red fluorescence (from Er3+) under 980 nm near infrared laser excitation, which can be used as fluorescent probes in the drug-delivery system.  相似文献   

8.
A distinct enhancement of upconversion luminescence from core to core/shell (C/S) structure under low flux near infrared (NIR) excitation at 976 nm has been achieved in lanthanide (Er3+, Yb3+)-doped NaYF4 core with undoped NaYF4 shell nanoparticles (NP). A green chemistry approach has been taken to synthesize monodisperse monophasic C/S NP with the core (~20 nm) and shell (~5 nm) crystallizing into cubic phase. Hydrophobic C/S NP have been further made hydrophilic by coating a transparent SHMP layer without affecting luminescence. C/S (NaYF4: Er, Yb/NaYF4) NP integrated dye-sensitized solar cell indicated 11.9% enhancement in overall conversion efficiency under AM 1.5 conditions, due to NIR–visible spectrum modification by fluorescent NPs. The results indicate great potential of such upconverting C/S nanophosphor in solar cell applications.  相似文献   

9.
Intense infrared-to-visible up-conversion (UC) emissions were obtained in hexagonal Yb3+-Tm3+ co-doped NaYF4 nanorods under excitation at 980 nm. Especially, luminescent switching between different UC emission wavelengths at 800, 480 and 450 nm were observed by adjusting excitation powers. Based on power-dependent spectral analyses, it was found that the cooperative energy transfer between Yb3+-Yb3+ pairs and Tm3+ ions play a key role on the luminescent switching besides the saturation effect of Yb3+2F5/2 and Tm3+1G4 excited states. Our results indicate that hexagonal NaYF4 nanostructures have potential applications in miniaturized solid-state laser, optical processing sensors and fluorescent biolabels.  相似文献   

10.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

11.
Uniform Yb3+ and Er3+-codoped Y2O3 hollow microspheres were synthesized via urea co-precipitation using carbon spheres as templates. Intense red emission (4F9/24I15/2) and weak green emission (2H11/2, 4S3/24I15/2) of Er3+ were observed for the Yb3+ and Er3+-codoped Y2O3 hollow microspheres under 980 nm infrared excitation. The integrated intensity of visible emission and the ratio of red to green were found to be strongly dependent on the amount of carbon sphere templates and the concentration of Yb3+ ions. The amount of carbon sphere templates also plays an important role in adjusting the size of crystallite. Multi-phonon relaxation resulted from the absorbents (OH and CO32−) on the surface of the crystallite, and efficient occur of energy transfer processes and cross-relaxation between Er3+ and Yb3+ are responsible for the enhancement of intensity ratio of red to green emission. Interestingly, for higher concentration of Yb3+ ions, the green emission is assigned to a three-phonon process in Y2O3:Yb/Er hollow microspheres, which also could result in the increase of the red to green emission ratio. An explanation to account for these behaviors was presented.  相似文献   

12.
共沉淀法制备NaYF4 : Tm3+,Yb3+的上转换发光   总被引:4,自引:3,他引:1       下载免费PDF全文
通过共沉淀法制备Tm3+和Yb3+掺杂的NaYF4上转换发光材料。其中Tm3+和Yb3+的摩尔分数分别为0.01%,0.1%。在室温下测试了NaYF4 : Tm3+,Yb3+材料在300~1 100 nm的吸收光谱。利用X射线衍射(XRD),扫描电镜(SEM)测试了合成材料的物相结构和微观形貌。结果表明:NaYF4 : Tm3+,Yb3+材料为六方相晶体,其颗粒大小约为50~60 nm,产物结晶良好,含有少量杂相。在798 nm近红外光激发下,测试了样品的上转换发光光谱。观察到了蓝、绿色上转换发光。讨论了上转换发光的可能机理,蓝光主要来源于Tm3+的激发态1G4到基态3H6的跃迁,绿光来源于Tm3+1D23H5跃迁。  相似文献   

13.
Er3+ doped and Yb3+/Er3+ co-doped Y4Al2O9 phosphors are prepared by the sol-gel method. The effect of dopant concentration on the structure and up-conversion properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to monoclinic. Under 980 nm excitation, the green and red up-conversion emissions are observed and the emission intensities depended on the Yb3+ ion concentration. The green up-conversion emissions decrease with the increase of Yb3+ concentration, while red emission increases as Yb3+ concentration increases from 0 to 8 at% and then decreases at high Yb3+ concentration. The mechanisms of the up-conversion emissions are discussed and results shows that in Er3+ and Yb3+/Er3+ co-doped system, cross-relaxation (CR) and energy transfer (ET) processes play an important role for the green and red up-conversion emissions.  相似文献   

14.
We have investigated the optical properties of sol-gel thin films of tin dioxide (SnO2) codoped with Er3+-Yb3+ as a function of Yb3+ concentration. The Judd-Ofelt model has been applied to absorption intensities of Er3+ (4f11) transitions to establish the so-called Judd-Ofelt intensity parameters: Ω2, Ω4, Ω6. Various spectroscopic parameters were obtained to evaluate their dependence and the potential of the samples as a laser material in the eye-safe laser wavelength (1.53 μm) as a function of Yb3+ concentration. An amelioration of the quality factor Ω4/Ω6 was found with Yb content. Both the IR photoluminescence (PL) intensity and the up-conversion emission, from Er3+ ion in SnO2, were found to increase with Yb concentration. We show that the Yb3+ ion acts as sensitizer for Er3+ ion and contributes largely to the improvement of the spectroscopic properties of SnO2:Er. The mechanism of up-conversion emission is discussed and a model is proposed. The results showed that sol-gel SnO2 is promising gain media for developing the solid-state 1.5 μm optical amplifiers and tunable up-conversion lasers.  相似文献   

15.
For biological application, lanthanide ion doped upconverting nanocrystals should be modified to be biocompatible. Here, we show a viable and efficient procedure for producing biocompatible NaYF4:Yb3+,Er3+ upconverting nanocrystals. The uniform NaYF4:Yb,Er upconverting nanocrystals were firstly synthesized by a mild chemical procedure, which were subsequently coated with a layer of polyethylene-glycol (PEG) to be biocompatible. The photoluminescent intensity of the PEG coated NaYF4:Yb,Er nanocrystals varies nonlinearly with increasing the thickness of the PEG coating. In particular, it was noted that the Intensity Ratio of Red to Green Emission (IRRGE) of PEG coated NaYF4:Yb,Er was highly depended on the excitation power density: IRRGE keeping almost constant with increasing the excitation power density below 826 W/cm2, but remarkably increasing when increasing the excitation power density above 826 W/cm2. For this unique phenomenon, the excitation and emission mechanisms related to PEG coating were discussed.  相似文献   

16.
Nd3+, Tm3+ and Yb3+ co-doped NaYF4 upconversion (UC) material was synthesized by the hydrothermal method. The structure of the sample was characterized by the X-ray diffraction, and its UC luminescence properties were investigated in detail. Under the 980 nm semiconductor laser excitation, its UC spectra exhibited distinct emission peaks at 451 nm, 475 nm and 646 nm respectively. On the basis of the comparison of UC spectra between NaYF4:Nd3+,Tm3+,Yb3+ and NaYF4:Tm3+,Yb3+, it was indicated that the existence of Nd3+ ion enhanced the blue emission intensity. The law of luminescence intensity versus pump power proved that the blue emission at 475 nm, and the red emission at 646 nm were the two-photon processes, while the blue emission at 451 nm was a three-photon process.  相似文献   

17.
Results of the optical spectroscopy investigation of the cubic paramagnetic center Yb3+ ion in the Cs2NaYF6 single crystal are presented. The Stark level energies of the Yb3+ multiplets are established from absorption, luminescence and excitation luminescence spectra and the crystal field parameters are calculated. Information about the phonon spectra of Cs2NaYF6 crystals is obtained from the electron-vibrational structure of the optical absorption and luminescence spectra.  相似文献   

18.
GdVO4 single crystal co-doped with Yb3+ and Er3+ was grown by the Czochralski method. The X-ray powder diffraction pattern of Yb,Er:GdVO4 crystal confirms that the as-grown crystal is isostructural with pure GdVO4 crystal. Its polarized absorption spectra and non-polarized fluorescence spectra were measured at room temperature. The absorption band at 984 nm for π-polarization has an FWHM of about 36 nm, which is favorable for InGaAs LD laser pumping. The spectrum properties of Er3+ in Yb,Er:GdVO4 crystal were investigated based on Judd–Ofelt theory. There is strong energy transfer from Yb3+ to Er3+ in this crystal. When excited with 980 nm radiation, this crystal emitted strong fluorescence at about 1529 nm and 552.5 nm. The total energy transfer rate and efficiency from Yb3+ to Er3+ is 3.33 ms-1 and 67%, respectively. The energy transfer between Er3+ and Yb3+ ions is a multistep transfer process, and was investigated based on a random-walk model. The investigation result shows that there is strong cooperative-sensitization effect from Yb3+ to Er3+, which is the main upconversion energy-transfer process in this crystal. PACS 42.70.Hj; 81.10.Fq; 42.55.Rz  相似文献   

19.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

20.
YVO4:Yb3+,Er3+; YVO4:Yb3+,Tm3+; and YVO4:Yb3+,Er3+,Tm3+ were all synthesized via sol-gel method with a subsequent thermal treatment. Specifically, YVO4:Yb3+,Er3+,Tm3+ phosphors were prepared with different annealing temperatures to study the influence of temperature. The transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescent (PL) spectrofluorometer were used to investigate the morphology, crystal structure, and up-conversion luminescent properties of all samples. In summary, all samples were granular-like nanoparticles and well crystallized with the same tetragonal phase as YVO4. Under the irradiation at 980 nm, YVO4:Yb3+,Er3+ phosphors can generate green emission at 525 and 553 nm and red emission at 657 nm, while YVO4:Yb3+,Tm3+ phosphors can generate blue emission at 476 nm, red emission at 648 nm, and near-infrared emission at 800 nm. Notably, YVO4:Yb3+,Er3+,Tm3+ samples can exhibit green emission, blue emission, red emission, and near-infrared emission at the same time, which might endow the as-prepared samples with potential applications in many fields, such as luminous paint, infrared detection, and biological label.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号