首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose the idea of developing THz quantum cascade lasers (QCLs) with GaN-based quantum well (QW) structures with significant advantages over the currently demonstrated THz lasers in the GaAs-based material system. While the ultrafast longitudinal optical (LO) phonon scattering in AlGaN/GaN QWs can be used for the rapid depopulation of the lower laser state, the large LO-phonon energy (∼90 meV) can effectively reduce the thermal population of the lasing states at higher temperatures. Our analysis of one particular structure has shown that a relatively low threshold current density of 832 A/cm2 can provide a threshold optical gain of 50/cm at room temperature. We have also found that the characteristic temperature in this structure is as high as 136 K.  相似文献   

2.
The longitudinal optical (LO) phonon energy in AlGaN/GaN heterostructures is determined from temperature-dependent Hall effect measurements and also from Infrared (IR) spectroscopy and Raman spectroscopy. The Hall effect measurements on AlGaN/GaN heterostructures grown by MOCVD have been carried out as a function of temperature in the range 1.8-275 K at a fixed magnetic field. The IR and Raman spectroscopy measurements have been carried out at room temperature. The experimental data for the temperature dependence of the Hall mobility were compared with the calculated electron mobility. In the calculations of electron mobility, polar optical phonon scattering, ionized impurity scattering, background impurity scattering, interface roughness, piezoelectric scattering, acoustic phonon scattering and dislocation scattering were taken into account at all temperatures. The result is that at low temperatures interface roughness scattering is the dominant scattering mechanism and at high temperatures polar optical phonon scattering is dominant.  相似文献   

3.
Electron–LO phonon and electron–electron transition rates are calculated for a three-level triple quantum well system to be employed as a laser operating in the far-infrared (30–300 μm) or terahertz (1–10 THz) region. The population ratio is determined from the ratio of the carrier lifetimes in levels |3〉 and |2〉. The most effective way of depopulating the lower laser level is found to be by LO phonon scattering to a strongly coupled state, as occurs at an anticrossing. Back scattering of carriers from level |1〉 to level |2〉 is significant at room temperature, but a population ratio of approximately 5 is possible nonetheless.  相似文献   

4.
In this work we theoretically investigate a possibility to use cubic nitride based multi-layer periodic nanostructure as a semiconductor metamaterial. The structure design is based on an active region of a quantum cascade laser optimized to achieve optical gain in the Terahertz (THz) spectral range. In particular, we test the GaN/AlGaN quantum well configurations, which should exhibit important advantages compared to GaAs-based structures, namely room temperature operation without the assistance of magnetic field and lower doping densities. Our numerical rate-equations model is solved self-consistently and it takes into account electron-longitudinal optical phonon scattering between all the relevant states among the adjacent periods of the structure. A global optimization routine, specifically genetic algorithm is then used to generate new gain-optimized structures. This work confirms the advantages of cubic GaN designs over GaAs ones, namely feasibility of negative refraction at room temperature without the assistance of magnetic field while keeping the doping densities of the same order of magnitude.  相似文献   

5.
In this paper a novel terahertz (THz) quantum cascade laser (QCL) based on GaN/AlGaN quantum wells has been proposed, which emits at two widely separated wavelengths 33 and 52 μm simultaneously in a single active region. The large LO-phonon energy (~90 meV), the ultrafast resonant phonon depopulation of the lower radiative levels, suppression of the electrons that escape to the continuum states and selective carrier injection and extraction all together lead to a considerable enhancement in the operating temperature of the structure. All calculations have been done at a temperature of 265 K. Moreover, similar behavior of the output optical powers is another remarkable feature, which makes both wavelengths useful for special applications.  相似文献   

6.
The Raman spectra of unintentionally doped gallium nitride (GaN) and Mg-doped GaN films were investigated and compared at room temperature and low temperature. The differences of E2 and A1(LO) mode in two samples are discussed. Stress relaxation is observed in Mg-doped GaN, and it is suggested that Mg-induced misfit dislocation and electron–phonon interaction are the possible origins. A peak at 247 cm?1 is observed in both the Raman spectra of GaN and Mg-doped GaN. Temperature-dependent Raman scattering experiment of Mg-doped GaN shows the frequency and intensity changes of this peak with temperature. This peak is attributed to the defect-induced vibrational mode.  相似文献   

7.
We report on a new design of terahertz quantum cascade laser based on a single, potential‐inserted quantum well active region. The quantum well properties are engineered through single monolayer InAs inserts. The modeling is based on atomistic, spds* tight‐binding calculations, and performances are compared to that of the classical three‐well design. We obtain a 100% increase of the oscillator strength per unit length, while maintaining a high, nearly temperature‐independent contrast between phonon‐induced relaxation times of the upper and lower lasing states. The improved performances are expected to allow THz lasing at room temperature.  相似文献   

8.
The Raman spectra of unintentionally doped gallium nitride (GaN) and Mg-doped GaN films were investigated and compared at room temperature and low temperature. The differences of E2 and A1(LO) mode in two samples are discussed. Stress relaxation is observed in Mg-doped GaN, and it is suggested that Mg-induced misfit dislocation and electron–phonon interaction are the possible origins. A peak at 247 cm−1 is observed in both the Raman spectra of GaN and Mg-doped GaN. Temperature-dependent Raman scattering experiment of Mg-doped GaN shows the frequency and intensity changes of this peak with temperature. This peak is attributed to the defect-induced vibrational mode. Translated from Chinese Journal of Semiconductors, 2005, 26(4) (in Chinese)  相似文献   

9.
Optical properties of star-shaped ZnO nanostructures were studied. The temperature-dependent photoluminescence (PL) was examined up to fourth-order longitudinal optical (LO) phonon assisted emissions of free excitons and confirmed that the nature of the room temperature PL in ZnO is 1-LO phonon assisted emission of free excitons. Low threshold ultraviolet stimulated emissions (SE) were obtained for our powder samples at room temperature. Picosecond time-resolved PL measurements detected a bi-exponential decay behavior which is strongly dependent on the excitation intensity: the slow decay term decreased faster than the fast decay term as the excitation intensity increased and the emission decays were dominated by the fast one. We also found that the emission decays decreased super-linearly before the appearance of the SE. This behavior may be used to deduce the threshold of SE or lasing.  相似文献   

10.
实验测量了室温下磷酸二氢钾(KDP)晶体0.2~1.6THz的时域光谱,以及50~4000cm叫范围内的远红外光谱,200~2000nm的紫外一可见一红外光谱。KDP晶体的禁带宽度是5.91eV,在测量范围内有一个很宽的声子吸收带,从0.2~205.5THz吸收系数在35~80cm-1,声子吸收的低频端小于0.2THz。最高的纵光学模声子的频率大约是205.5THz,由此求出这支声子的H—O键的力常数为13.13N·cm-1。  相似文献   

11.
段小玲  张进成  肖明  赵一  宁静  郝跃 《中国物理 B》2016,25(8):87304-087304
A novel groove-type channel enhancement-mode AlGaN/GaN MIS high electron mobility transistor(GTCE-HEMT)with a combined polar and nonpolar AlGaN/GaN heterostucture is presented. The device simulation shows a threshold voltage of 1.24 V, peak transconductance of 182 m S/mm, and subthreshold slope of 85 m V/dec, which are obtained by adjusting the device parameters. Interestingly, it is possible to control the threshold voltage accurately without precisely controlling the etching depth in fabrication by adopting this structure. Besides, the breakdown voltage(VB) is significantly increased by 78% in comparison with the value of the conventional MIS-HEMT. Moreover, the fabrication process of the novel device is entirely compatible with that of the conventional depletion-mode(D-mode) polar AlGaN/GaN HEMT. It presents a promising way to realize the switch application and the E/D-mode logic circuits.  相似文献   

12.
In this paper, a new current expression based on both the direct currect(DC) characteristics of the AlGaN/GaN high election mobility transistor(HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the AlGaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of I–V, S-parameter, and radio frequency(RF) large-signal characteristics are compared for a self-developed on-wafer AlGaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-μm wide(Such an AlGaN/GaN HEMT is denoted as AlGaN/GaN HEMT(10 × 125 μm)). The improved large signal model simulates the I–V characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.  相似文献   

13.
We compare the quality factor values of the whispering gallery modes of microdisks (μ-disks) incorporating GaN quantum dots (QDs) grown on AlN and AlGaN barriers by performing room temperature photoluminescence (PL) spectroscopy. The PL measurements show a large number of high Q factor resonant modes on the whole spectrum, which allows us to identify the different radial mode families and to compare them with simulations. We report a considerable improvement of the Q factor, which reflects the etching quality and the relatively low cavity loss by inserting QDs into the cavity. GaN/AlN QDs-based μ-disks show very high Q values (Q>7000) whereas the Q factor is only up to 2000 in μ-disks embedding QDs grown on the AlGaN barrier layer. We attribute this difference to the lower absorption below bandgap for AlN barrier layers at the energies of our experimental investigation.  相似文献   

14.
The drift velocity, electron temperature, electron energy and momentum loss rates of a two-dimensional electron gas are calculated in a GaN/AlGaN heterojunction (HJ) at high electric fields employing the energy and momentum balance technique, assuming the drifted Fermi–Dirac (F–D) distribution function for electrons. Besides the conventional scattering mechanisms, roughness induced new scattering mechanisms such as misfit piezoelectric and misfit deformation potential scatterings are considered in momentum relaxation. Energy loss rates due to acoustic phonons and polar optical phonon scattering with hot phonon effect are considered. The calculated drift velocity, electron temperature and energy loss rate are compared with the experimental data and a good agreement is obtained. The hot phonon effect is found to reduce the drift velocity, energy and momentum loss rates, whereas it enhances the electron temperature. Also the effect of using drifted F–D distribution, due to high carrier density in GaN/AlGaN HJs, contrary to the drifted Maxwellian distribution function used in the earlier calculations, is brought out.  相似文献   

15.
研究了表面预处理对GaN同质外延的影响,获得了高电子迁移率AlGaN/GaN异质结材料.通过NH_3/H_2混合气体与H_2交替通入反应室的方法对GaN模板和GaN半绝缘衬底进行高温预处理.研究结果表明,NH_3/H_2能够抑制GaN的分解,避免粗糙表面,但不利于去除表面的杂质,黄光带峰相对强度较高;H_2促进GaN分解,随时间延长GaN分解加剧,导致模板表面粗糙不平,AlGaN/GaN HEMT材料二维电子气迁移率降低.采用NH_3/H_2混合气体与H_2交替气氛模式处理模板或衬底表面,能够清洁表面,去除表面杂质,获得平滑的生长表面和外延材料表面,有利于提高AlGaN/GaN HEMT材料电学性能.在GaN衬底上外延AlGaN/GaN HEMT材料,2DEG迁移率达到2113 cm~2/V·s,电学性能良好.  相似文献   

16.
实验测量了室温下磷酸二氢钾KH2PO4(KDP)晶体0.2~1.6THz的时域光谱,以及50~4000cm-1范围内的远红外光谱,200~2000nm的紫外-可见-红外光谱。KDP晶体的禁带宽度是5.91eV。在测量范围内有一个很宽的声子吸收带。从0.2~205.5THz吸收系数在35~80cm-1,声子吸收的低频端小于0.2THz。最高的纵光学模声子的频率νLO大约是205.5THz,由此求出这支声子的H—O键的力常数为13.13N·cm-1。  相似文献   

17.
Raman scattering from an AlGaN/GaN heterostructure was performed in the temperature range from 77 to 773 K. The first- and second-order Raman scattering of the A1 longitudinal-optical phonon–plasmon coupled mode from an AlGaN/GaN interface as well as the Raman scattering from the GaN layer were observed. All the modes downshift, and their intensities weaken with increasing temperature. The free-carrier concentration estimated by the frequency of the coupled mode from an AlGaN/GaN interface is 7.5 times as high as that of n-AlGaN, indicating mass free-carrier transfer from the AlGaN barrier to the GaN well. Moreover, the temperature dependence of the phonon frequency is well described by an empirical formula. PACS 78.30.Fs; 63.20.Ls; 61.82.Fk; 68.60.Dv; 81.15.Gh  相似文献   

18.
ZnSe/ZnCdSe超晶格的共振拉曼散射特性李文深池元斌*李岩梅*范希武申德振杨宝均王敬伯(中国科学院长春物理研究所,激发态物理开放实验室长春130021)*(吉林大学超硬材料国家重点实验室,长春130023)ResonantRamanSpectr...  相似文献   

19.
In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K.The temperature-dependences of GaN phonon modes(A1(TO),E2(high),and E1(TO)) and the linewidths of E2(high) phonon peak are studied.The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range,and the relationship can be fitted to the pseudo-Voigt function.From analytic results we find a critical temperature existing in the relationship,which can characterize the anharmonic effects of a-plane GaN in different temperature ranges.In the range of higher temperature,the relationship exhibits an approximately linear behavior,which is consistent with the analyzed results theoretically.  相似文献   

20.
纳米结构ZnO晶体薄膜室温紫外激光发射   总被引:4,自引:0,他引:4  
汤子康 《物理》2005,34(1):21-30
文章综述了纳米结构的氧化锌半导体薄膜在室温下自由激子的自发辐射以及由自由激子引起的受激发射的特性,阐述了在不同激发密度下室温紫外受激发射的机理.纳米结构氧化锌半导体薄膜是用激光分子束外延(L-MBE)技术生长在蓝宝石衬底上的.薄膜由密集而规则排列的纳米尺度的六角柱组成.这些纳米六角柱起着限制激子运动的作用,激子的量子尺寸效应,使激子的跃迁振子强度大幅度增强.同时六角柱之间的晶面组成了一个天然的激光谐振腔.室温下用三倍频的YAG脉冲激光激发,可从这些纳米结构的氧化锌薄膜中观测到很强的紫外激光发射.研究发现,在中等激发密度下,紫外受激发射是由于激子与激子间碰撞而引起的辐射复合.在高密度激发条件下,由于激子趋于离化,紫外受激发射主要由电子-空穴等离子体的辐射复合引起.由于纳米结构中激子的跃迁振子增强效应,在室温下测量到的光学增益高达320cm^-1,这比在同样条件下测量到的块状氧化锌晶体的光学增益要高一个量级以上.与传统的电子-空穴等离子体激光辐射相比,激子引起的受激发射可在较低的激发密度条件下实现.这在实际应用上很有价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号