首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A collision model for the kinetic energy dependence of the reaction cross section has been obtained by considering total angular momentum limitation at the entrance (reactants) or exit (products) reactive channel in the atom—diatom scheme. The model provides a satisfactory representation of the main “translational cross section features” (i.e., Arrhenius like behaviour near threshold, maximum, post-maximum decline and minimum) found in the reaction cross section by molecular beam experiments. Maximum and minimum explanations, including some predictions as well as a comparison with previous theoretical treatments are reported. Also an approximate method to obtain dissociation energies of the product diatom from the cross-section data is presented with relative success.  相似文献   

2.
A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.  相似文献   

3.
Pulsed 266 and 355 nm ultraviolet laser irradiation of monolayer vinyl chloride physisorbed on Ag(111) results in molecular dissociation leading to C2H3 and Cl, much of which is adsorbed to the surface. On the basis of observations made on dissociation dependences on chlorine isotope and photon energy, it is deduced that upon excitation vinyl chloride forms a transient negative ion through a substrate mediated, vertical electron attachment mechanism. The anion either dissociates or relaxes through energy transfer to the neutral state causing the neutral molecule to desorb. The threshold for vertical attachment of substrate electron is estimated to be 0.8 eV below the vacuum level, in agreement with the experimentally observed wavelength dependence in photoinduced dissociation. Chemisorbed Cl on the Ag(111) surface inhibits the photodissociation process by increasing the substrate work function and consequently the energy threshold for electron vertical attachment. Upon heating the Ag(111) surface, adsorbed vinyl combines to produce 1,3-butadiene in a first order, diffusion limited, process with an activation energy of 10.4 kcal/mol.  相似文献   

4.
Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)(n) (n = 2-32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very "tight" (A(infinity) = 10(9.9) s(-1)) to "loose" (A(infinity) = 10(16.8) s(-1)) were selected to represent dissociation parameters within the experimental temperature range (300-520 K) and kinetic window (k(uni) = 0.001-0.20 s(-1)) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules.  相似文献   

5.
The nature of the Arrhenius activation energy and frequency factor is reexamined in terms of information now becoming available on the microscopic aspects of collisional reactions. It is pointed out that the activation energy is not generally equal to the threshold for reaction, and its correct conceptual meaning is discussed. The temperature dependence of this quantity and its relation to the threshold energy is developed for a number of representative forms of the energy dependence of the reaction cross-section (excitation function). The uses and limitations of the activation energy as a means of evaluating thresholds, excitation functions, and the presence of tunneling processes are discussed.  相似文献   

6.
A model for taking into account surface temperature effects in molecule-surface reactions is reported and applied to the dissociation of H(2) and D(2) on Cu(111). In contrast to many models developed before, the model constructed here takes into account the effects of static corrugation of the potential energy surface rather than energy exchange between the impinging hydrogen molecule and the surface. Such an approximation is a vibrational sudden approximation. The quality of the model is assessed by comparison to a recent density functional theory study. It is shown that the model gives a reasonable agreement with recently performed ab initio molecular dynamics calculations, in which the surface atoms were allowed to move. The observed broadening of the reaction probability curve with increasing surface temperature is attributed to the displacement of surface atoms, whereas the effect of thermal expansion is found to be primarily a shift of the curve to lower energies. It is also found that the rotational quadrupole alignment parameter is generally lowered at low energies, whereas it remains approximately constant at high energies. Finally, it is shown that the approximation of an ideal static surface works well for low surface temperatures, in particular for the molecular beams for this system (T(s) = 120 K). Nonetheless, for the state-resolved reaction probability at this surface temperature, some broadening is found.  相似文献   

7.
The neutral molecule temperature dependence of the rate coefficient for the electron transfer reaction from H(2)O to N(2)(+) is determined using a coaxial molecular beam radio frequency ring electrode ion trap (CoMB-RET) method. The temperature of the N(2)(+) ions was maintained at 100 K, while the effusive water beam temperature was varied from 300 to 450 K. The result demonstrates the neutral molecule rotational/translational energy dependence on the rate coefficient of an ion-dipolar molecule reaction. It is found that the rate coefficient in the above temperature range follows the prediction of the simplest ion-dipole capture model. Use of different buffer gas collisional cooling in both the ion source and the RET reveals the effects of both translational and vibrational energy of the N(2)(+) ions.  相似文献   

8.
A novel quantum chemical approach recently developed has been applied to an ionic dissociation of a water molecule (2H(2)O-->H(3)O(+)+OH(-)) in ambient and supercritical water. The method is based on the quantum mechanical/molecular mechanical (QM/MM) simulations combined with the theory of energy representation (QM/MM-ER), where the energy distribution function of MM solvent molecules around a QM solute serves as a fundamental variable to determine the hydration free energy of the solute according to the rigorous framework of the theory of energy representation. The density dependence of the dissociation free energy in the supercritical water has been investigated for the density range from 0.1 to 0.6 g/cm(3) with the temperature fixed at a constant. It has been found that the product ionic species significantly stabilizes in the high density region as compared with the low density. Consequently, the dissociation free energy decreases monotonically as the density increases. The decomposition of the hydration free energy has revealed that the entropic term (-TDeltaS) strongly depends on the density of the solution and dominates the behavior of the dissociation free energy with respect to the variation of the density. The increase in the entropic term in the low density region can be attributed to the decrease in the translational degrees of freedom brought about by the aggregation of solvent water molecules around the ionic solute.  相似文献   

9.
 We have applied the PFG NMR technique to investigate the translational mobility in the PVP-PEG system as a function of composition and temperature at the stages of PVP-PEG complex formation, its swelling, and dissolution in excess of liquid PEG. It has been found that the variations of the spin-echo attenuation with PEG content, water amount, and temperature reflect the different stages. The first two stages are characterized by a distribution of the self-diffusion coefficients of PEG involved in the network. The dissolution shows two diffusion coefficients; the fast one is attributed to PEG molecules, the slow one to the associates of PEG and PVP. The temperature dependencies can be described by an Arrhenius law with an activation energy depending on the composition of the blend. The concentration dependence of the PEG self-diffusion coefficients in the blend occurred to be independent of the molecular weight of PVP. The results are discussed in terms of the Mackie-Meares model. Received: 23 August 2000 Accepted: 19 October 2000  相似文献   

10.
氧化锆基固体电解质材料与温度无关的离子电导活化能   总被引:2,自引:0,他引:2  
氧化锆(ZrO2)基固体电解质材料的离子电导率随温度的变化关系呈现非线性Arrhenius特征;相应地,由经典的Arrhenius公式计算得到的电导活化能是一个与温度有关的参数.本文通过对实验获得的几种Y2O3稳定立方ZrO2(YSZ) 材料的电导率-温度关系的分析,对经典的Arrhenius公式进行了修正.由修正后的Arrhenius公式计算得到的电导活化能是一个与温度无关的常数.此外,还进一步借助于物理化学中的过渡状态理论,从材料离子导电机制出发对这一与温度无关的电导活化能的合理性进行了讨论,发现这一活化能在数值上与理论计算结果吻合得很好.  相似文献   

11.
The emission from the acidic form of the green fluorescence protein (GFP) changes with increasing time and temperature from t-1/2 to t-3/2 asymptotics. It is shown that a model of proton diffusion along a one-dimensional hydrogen-bond network within the protein, with a switch (Thr203) allowing for proton escape, explains the data quantitatively. From a comparison of the model with experiment, we obtain the rate parameters for proton dissociation from the chromophore (showing an inverse temperature effect), the ratio of the proton association constant squared to its diffusion constant (exhibiting no temperature effect), and the time constant for switch opening (with a significant Arrhenius dependence). Thus, proton dissociation has a small negative activation energy (assigned to a complex of the anionic chromophore with H3O+), whereas the switch has a large positive activation energy (assigned to Thr203 side-chain rotation). Proton migration is possibly the outcome of the concerted motion of several protons within GFP.  相似文献   

12.
A simple picture of the hydrogen dissociation/associative desorption dynamics on Cu(111) emerges from a two-parameter, full dimensionality microcanonical unimolecular rate theory (MURT) model of the gas-surface reactivity. Vibrational frequencies for the reactive transition state were taken from density functional theory calculations of a six-dimensional potential energy surface [Hammer et al., Phys. Rev. Lett. 73, 1400 (1994)]. The two remaining parameters required by the MURT were fixed by simulation of experiments. These parameters are the dissociation threshold energy, E(0)=79 kJmol, and the number of surface oscillators involved in the localized H(2)Cu(111) collision complex, s=1. The two-parameter MURT quantitatively predicts much of the varied behavior observed for the H(2) and D(2)Cu(111) reactive systems, including the temperature-dependent associative desorption angular distributions, mean translational energies of the associatively desorbing hydrogen as a function of rovibrational eigenstate, etc. The divergence of the statistical theory's predictions from experimental results at low rotational quantum numbers, J < or approximately 5, suggests that either (i) rotational steering is important to the dissociation dynamics at low J, an effect that washes out at high J, or (ii) molecular rotation is approximately a spectator degree of freedom to the dissociation dynamics for these low J states, the states that dominate the thermal reactivity. Surface vibrations are predicted to provide approximately 30% of the energy required to surmount the activation barrier to H(2) dissociation under thermal equilibrium conditions. The MURT with s=1 is used to analytically confirm the experimental finding that partial differential "E(a)(T(s))" partial differential E(t)= -1 for eigenstate-resolved dissociative sticking at translational energies E(t)相似文献   

13.
The dynamics of H(2)O adsorption on Pt{110}-(1 x 2) is studied using supersonic molecular beam and temperature programed desorption techniques. The sticking probabilities are measured using the King and Wells method at a surface temperature of 165 K. The absolute initial sticking probability s(0) of H(2)O is 0.54+/-0.03 for an incident kinetic energy of 27 kJmol. However, an unusual molecular beam flux dependence on s(0) is also found. At low water coverage (theta<1), the sticking probability is independent of coverage due either to diffusion in an extrinsic precursor state formed above bilayer islands or to incorporation into the islands. We define theta=1 as the water coverage when the dissociative sticking probability of D(2) on a surface predosed with water has dropped to zero. The slow falling H(2)O sticking probability at theta>1 results from compression of the bilayer and the formation of multilayers. Temperature programed desorption of water shows fractional order kinetics consistent with hydrogen-bonded islands on the surface. A remarkable dependence of the initial sticking probability on the translational (1-27 kJ/mol) and internal energies of water is observed: s(0) is found to be essentially a step function of translational energy, increasing fivefold at a threshold energy of 5 kJ/mol. The threshold migrates to higher energies with increasing nozzle temperature (300-700 K). We conclude that both rotational state and rotational alignment of the water molecules in the seeded supersonic expansion are implicated in dictating the adsorption process.  相似文献   

14.
A quasi-classical trajectory (QCT) calculation with the fourth-order explicit symplectic algorithm for the N(4S) + O2(X3Σg) → NO(X2Π) + O(3P) reaction has been performed by employing the ground and first-excited potential energy surfaces (PESs). Since the translational temperature considered is up to 5000 K, the larger relative translational energy and the higher vibrational and rotational level of O2 molecule have been taken into account. The affect of the relative translational energy, the vibrational and rotational level of O2 molecule in the reaction cross-sections of the ground and first-excited PESs has been discussed in a extensive range. And we exhibit the dependence of microscopic rate constants on the vibrational and rotational level of O2 molecule at T = 4000 K. The thermal rate constants at the translational temperature betweem 300 and 5000 K have been evaluated and the corresponding Arrhenius curve has been fitted for reaction (1). It is found by comparison that the thermal rate constants determined in this work have a better agreement with the experimental data and provide a more valid theoretical reference.  相似文献   

15.
The dissociative sticking coefficient for C2H6 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. A microcanonical unimolecular rate theory (MURT) model of the reactive system is used to extract transition state properties from the data as well as to compare our data directly with supersonic molecular beam and thermal equilibrium sticking measurements. We report for the first time the threshold energy for dissociation, E0 = 26.5 +/- 3 kJ mol(-1). This value is only weakly dependent on the other two parameters of the model. A strong surface temperature dependence in the initial sticking coefficient is observed; however, the relatively weak dependence on gas temperature indicates some combination of the following (i) not all molecular excitations are contributing equally to the enhancement of sticking, (ii) that strong entropic effects in the dissociative transition state are leading to unusually high vibrational frequencies in the transition state, and (iii) energy transfer from gas-phase rovibrational modes to the surface is surprisingly efficient. In other words, it appears that vibrational mode-specific behavior and/or molecular rotations may play stronger roles in the dissociative adsorption of C2H6 than they do for CH4. The MURT with an optimized parameter set provides for a predictive understanding of the kinetics of this C-H bond activation reaction, that is, it allows us to predict the dissociative sticking coefficient of C2H6 on Pt(111) for any combination of Ts and Tg even if the two are not equal to one another.  相似文献   

16.
Molecular activation by blackbody photons, first postulated in 1919 by Perrin, plays a dominant role in the unimolecular dissociation of large ions trapped at low pressure in a Fourier-transform mass spectrometer. Under readily achievable experimental conditions, molecular ions of the protein ubiquitin equilibrate with the blackbody radiation field inside the vacuum chamber. The internal energy of a population of these ions is given by a Boltzmann distribution. From the temperature dependence of unimolecular dissociation rate constants measured in the zero-pressure limit, Arrhenius activation parameters equal to those in the high-pressure limit are obtained.  相似文献   

17.
We report quasi-elastic neutron scattering experiments at two resolutions that probe timescales of picoseconds to nanoseconds for the hydration dynamics of water, confined in a concentrated solution of N-acetyl-leucine-methylamide (NALMA) peptides in water over a temperature range of 248 K to 288 K. The two QENS resolutions used allow for a clean separation of two observable translational components, and ultimately two very different relaxation processes, that become evident when analyzed under a combination of the jump diffusion model and the relaxation cage model. The first translational motion is a localized beta-relaxation process of the bound surface water, and exhibits an Arrhenius temperature dependence and a large activation energy of approximately 8 kcal mol(-1). The second non-Arrhenius translational component is a dynamical signature of the alpha-relaxation of more fluid water, exhibiting a glass transition temperature of approximately 116 K when fit to the Volger Fulcher Tamman functional form. These peptide solutions provide a novel experimental system for examining confinement in order to understand the dynamical transition in bulk supercooled water by removing the unwanted interface of the confining material on water dynamics.  相似文献   

18.
We investigated dissociation of X-(H2O)n (X = Cl, I, n = 13-31) by the impact onto a (La0.7Ce0.3)B6(100) surface at a collision energy Ecol of 1-5 eV per water molecule in a tandem time-of-flight mass spectrometer equipped with a translation-energy analyzer. The mechanism of the dissociation was elucidated on the basis of the measurements of the mass spectrum and the translational energies of the product anions, X-(H2O)m (m = 0-4), scattered from the surface. It was concluded that (1) the parent cluster anion impacted on the surface undergoes dissociation on the surface under quasiequilibrium with its characteristic time varying with Ecol and n, and (2) the total collision energy introduced is partitioned preferentially to the translational motions of the products on the surface and to the rotational, the vibrational, and the lattice vibrational motions (surface) in this order. The quasiequilibrium model is applicable, even at the collision energy as low as 1 eV, because the translational modes are found to be statistically distributed while the other modes are not much populated by dynamical and energetics limitation.  相似文献   

19.
Three-dimensional time-dependent quantum mechanical method has been used to study the influence of orientation, rotation, and vibration on the dissociation of water molecule on Cu(111) surface, using London-Eyring-Polanyi-Sato potential energy surface. Our calculations show that dependency of dissociation probability on the initial orientation of the molecule changes with the vibrational state of the molecule. It has also been found that for v(0) = 0 and 1, where v(0) stands for the vibrational state of the pseudo diatomic HO-H, the rotational excitation of the molecule increases the reactivity, whereas for v(0) = 2, the rotational excitation of the molecule decreases the reactivity. Vibrational excitation of the molecule greatly enhances the dissociation probability.  相似文献   

20.
Gao  Yang-Yang  Hu  Feng-Yan  Liu  Jun  Wang  Zhao 《高分子科学》2018,36(1):119-128
t In this work,the effect of the fullerene (C60) weight fraction and PB-C60 interaction on the glass transition temperature (Tg) of polymer chains has been systemically investigated by adopting the united atom model of cis-1,4-poly(butadiene) (cis-PB).Various chain dynamics properties,such as atom translational mobility,bond/segment reorientation dynamics,torsional dynamics,conformational transition rate and dynamic heterogeneity of the cis-PB chains,are analyzed in detail.It is found that Tg could be affected by the C60 weight fraction due to its inhibition effect on the mobility of the cis-PB chains.However,Tg is different,which depends on different dynamics scales.Among the chain dynamics properties,Tg is the lowest from atom translational mobility,while it is the highest from the dynamic heterogeneity.In addition,Tg can be more clearly distinguished from the dynamic heterogeneity;however,the conformational transition rate seems to be not very sensitive to the C60 weight fraction compared with others.For pure cis-PB chains,Tg and the activation energy in this work can be compared with those of other polymers.In addition,the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg.The activation energy below Tg is lower than that above Tg.This work can help to understand the effect of the C60 on the dynamic properties and glass transition temperature of the cis-PB chains from different scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号