首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of plutonium in the environment have focused on the α-emitting isotopes 238Pu, 239Pu and 240Pu, often overlooking the β-emitting isotope 241Pu  because of its relatively short half-life (14.4 years). Here, we summarize sources of  241Pu and discuss its distribution and behavior in the environment. In the short term, 241Pu, the largest contributor to the total plutonium radioactivity whereas in the long term its decay products, 241Am and 237Np, are the major contributors as some 46% of current total 241Am is attributable to 241Pu decay. In this context, understanding the fate and transport of 241Pu is crucial to assessing long-term radiological dose.  相似文献   

2.
152Eu and 241Am are the most frequently used radiotracers in the separation studies on trivalent minor actinides and lanthanides. In almost all those studies, the determination of 152Eu and 241Am has been based on measuring their γ radiation by using a NaI(Tl) scintillation detector and/or a germanium detector. In this study, based on measuring the β particles and mono-energy electrons from 152Eu and the α particles from 241Am, we provide a new option to simultaneously determine the radioactivities of 152Eu and 241Am by liquid scintillation counting (LSC) with the aid of α/β discrimination. If the count rate ratio of 241Am to 152Eu is within the range of 100:1–1:100, the radioactivities of 152Eu and 241Am in mixed samples can be simultaneously determined by LSC with the errors less than 5 %. In addition, the interferences of 241Am on Eu are divided into two parts: inside and outside the 241Am region of interest. Only if the count rate ratio of 241Am to Eu is more than 10:1, should the latter interference be in consideration.  相似文献   

3.
The improvement and the refinement of non-viable Rhizopus arrhizus biomass were investigated via immobilization. Immobilization was carried out by using sodium alginate/CaCl2 solution and formaldehyde/HCl cross-linking with dead Rhizopus arrhizus biomass and were used for the sorption of radionuclides from low level effluent wastes. The sodium alginate/CaCl2 immobilized biomass (ratio 1:2) showed about 86% sorption for 241Am activity but due to its soft nature and tendency to undergo distortion in shape, is unsuitable for practical applications. The biomass cross-linked with 15% formaldehyde/0.1 M HCl solution has a relatively high mechanical strength and rigidity. It was showing a sorption of >99% for 241Am activity and has the sorption capacity of ~65 mg/g for americium and uranium. Hence, it can be utilized for the removal of radionuclides from radioactive waste effluents.  相似文献   

4.
The simultaneous determination of multiple actinide isotopes in samples where total quantity is limited can sometimes present a unique challenge for radioanalytical chemists. In this study, re-determination of 238Pu, 239+240Pu, and 241Am for soils collected and analyzed approximately three decades ago was the goal, along with direct determination of 241Pu. The soils had been collected in the early 1970’s from a shallow land burial site for radioactive wastes called the Subsurface Disposal Area (SDA) at the Idaho National Lab (INL), analyzed for 238Pu, 239+240Pu, and 241Am, and any remaining soils after analysis had been archived and stored. We designed an approach to reanalyze the 238Pu, 239+240Pu, and 241Am and determine for the first time 241Pu using a combination of traditional and new radioanalytical methodologies. The methods used are described, along with estimates of the limits of detection for gamma-and alpha-spectrometry, and liquid scintillation counting. Comparison of our results to the earlier work documents the ingrowth of 241Am from 241Pu, and demonstrates that the total amount of 241Am activity in these soil samples is greater than would be expected due to ingrowth from 241Pu decay.  相似文献   

5.
The fine structure (fs) and hyperfine structure (hfs) level scheme of Am I is reanalysed using a semi empirical fitting procedure which incorporates experimental data. Especially new laserspectroscopic measurements of the hfs of some electronic transitions in the Am atom enables us to make a more detailed analysis of 5f 7 7s 7p fine structure in Am I. In particular a relation is given between theB-factor values and the value of the nuclear electric quadrupole moment of241Am independent of a calibration by results of nuclear spectroscopy.  相似文献   

6.
A liquid scintillation counting method for the simultaneous determination of Pu and Am, with a two-phase cocktail, has been applied to the analysis of a tissue sample from an accidental exposure incident. The sample contained239Pu,241Pu, and241Am. In addition to analysis by two liquid scintillation counting techniques, analysis of the sample was performed by -spectroscopy and ZnS scintillation techniques, and the results were compared. The presence of241Pu interfered with the liquid scintillation determination of241Am when the two-phase cocktail was used, but the results were in agreement sufficient to be useful in determining what course of treatment, if any, might be necessary for the patient.  相似文献   

7.
The L shell intensity ratios Ll/Lα have been measured for some elements in the atomic number region 73⩽Z⩽92. The samples were excited 59.54 keV photons from a filtered radioisotope 241Am point source in the external magnetic field of intensities ±0.75 T. For B=0, the experimental values were compared with theoretical values calculated using Scofield's table based on the Hartree–Slater theory. These values were found to agree with each other.  相似文献   

8.
The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO3, total dissolved solids, Ca2+, Mg2+, CO32?, HCO3? and total Fe2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.  相似文献   

9.
As an important radioisotope in nuclear industry and other fields, 241 Am is one of the most serious contamination concerns due to its high toxicity and long half-life. In order to supply useful reference for disposal of 241Am waste with low-medium radioactivity, the adsorption and migration behavior of 241Am on aerated zone soil were investigated by the static experimental method and column experiments. The results showed that more than 98% of the total 241Am could be adsorbed from 241Am solution of 0.32·10−7−1.1·10−7 mol/l by the soil at pH 4–9. The adsorption of 241Am on the soil was a pH-dependent process at pH<4, but for pH>4, the adsorption rate of 241Am on the soil changed minutely. The adsorption equilibrium was achieved within 24 hours and no significant effect on adsorption of 241Am was observed at liquid-solid ratios of 50:1–500:1. The relationship between concentration of 241Am and adsorption capacities of 241Am can be described by the Freundlich adsorption equation. Adsorption of 241Am on the soil can be inhibited by humic acid, ferric hydroxide colloid, or some anions, such as citric acid anion, saturated EDTA solution, C2O4 2− and CO3 2−. It was also noted that the adsorption rate of 241Am drops in solutions containing Eu3+ or Nd3+, even 0.5 times above the 241Am concentration. A migration distance of 8 mm for 241Am(III) is observed only in the aerated zone soil containing ferric colloid, while a migration distance of less than 2 mm is noted in other soil samples after more than 250 days. All these results indicate that the aerated zone soil is an efficient sorbent for 241Am and can inhibit the migration of 241Am.  相似文献   

10.
The plutonium and americium concentration and vertical distribution in some Italian mosses and lichens have been determined. The239,240Pu,238Pu and241Am concentration ranges in tree trunk lichens 0.83–1.87, 0.052–0.154 and 0.180–0.770 Bq/kg, respectively. The corresponding values in tree mosses are higher and more scattered ranging from 0.321 to 4.96, from 0.029 to 0.171 and from 0.200 to 1.93 Bq/kg. The mean238Pu/239,240Pu and241Am/239,240Pu ratios are 0.088±0.037 and 0.38±0.13 in lichens and 0.091±0.072 and 0.54±0.16 in tree mosses. The Pu and Am concentrations are relatively low in terrestrial mosses. The239,240Pu,238Pu and241Am vertical distributions in a terrestrial moss core (Neckera Crispa) collected near Urbino (central Italy) show an exponential decrease with the height. On the contrary the241Am vertical distribution in another terrestrial moss core (Sphagnum Compactum) collected in the Alps (northern Italy) shows an interesting peak at 16 cm which corresponds to the deposition of fallout from the nuclear weapon tests in 1960's. The241Am movement upward and downward in the moss core is also studied. The results show once again that both mosses and lichens are very effective accumulators of Pu and Am and that they can be used as good biological indicators of the radionuclide airbome pollution from nuclear facilities and nuclear weapon tests. They can play a very impotant role in cycling naturally or artificially enhanced radionuclides in the atmosphere over long time scales.  相似文献   

11.
The activities of 133Ba, 137Cs, 152Eu, 154Eu, 155Eu, 239Pu, and 241Am were determined by gamma spectroscopy on the largest sample set (n = 49) of bulk trinitite to date. The range in activity for all isotopes is large. For example, the activity of 241Am (normalized to the time of detonation) ranges between 1 and 42 Bq/g. Comparison of activities for isotopes derived from the device, 241Am versus 137Cs, 155Eu, and 239Pu, indicate positive trends. Correlations were not observed between the activities of the soil-derived activation products 152Eu and 154Eu and the radioisotopes from the device. The calculated ratio of fission products (155Eu/137Cs) is 0.012 ± .006 (1σ, n = 3), which is lower than predicted for the thermal neutron-induced fission of 239Pu (~0.03). This discrepancy may be attributed to the spontaneous fission of the natural U tamper resulting in mixing between fission products from 239Pu and 235U. The spatial distribution of the trinitite samples relative to ground zero has been modeled based on the activity of 152Eu. The calculated distances do not correlate with any of the activities for the radioisotopes investigated here, and suggest a relatively homogeneous distribution. However, trinitite samples with the highest activities for 137Cs, 239Pu, and 241Am yield the shortest calculated distances of 50–60 m away from ground zero.  相似文献   

12.
Migration experiments with 237Np(V) and 241Am(III) have been performed using a column system, packed with loess, taken from Shanxi, China. The adsorption mechanism of 237Np and 241Am on the loess was examined by a chemical extraction method. Most of 237Np was adsorbed on the influent edge of the column, and the adsorbtion was mainly controlled by surface complexation. However, the migration of 237Np in loess media could be roughly evaluated by the distribution coefficient. In the case of 241Am, particulate, the 241Am species was formed in the influent solution and moved in the column. The 241Am adsorbed on loess was controlled by irreversible reactions. The migration behavior of particulate 241Am in loess media could be expressed by the filtration theory.  相似文献   

13.
Biosorption of 241Am by a fungus A. niger, including the spore and hyphae, was investigated. The preliminary results showed that the adsorption of 241Am by the microorganism was efficient. More than 96% of the total 241Am could be removed from 241Am solutions of 5.6-111 MBq/l (C o) by spore and hyphaeof A. niger, with adsorbed 241Am metal (Q) of 7.2-142.4 MBq/g biomass, and 5.2-106.5 MBq/g, respectively. The biosorption equilibrium was achieved within 1 hour and the optimum pH range was pH 1-3. No obvious effects on 241Am adsorption by the fungus were observed at 10-45 °C, or in solutions containing Au3+ or Ag+, even 2000 times above the 241Am concentration. The 241Am biosorption by the fungus obeys the Freundlich adsorption equation. There was no significant difference between the adsorption behavior of A. nigerspore and hyphae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The optimum conditions for high electrodeposition yields of trace amounts of americium on a stainless steel plate and an aluminium foil were studied. In the case of a stainless steel cathode, the following conditions can be recommended: electrolyte, 10 ml of a 0.1M ammonium oxalate buffer solution with 0.5 ml of the americium stock solution (7∶93 v/v, HNO3); current density, 86 mA/cm2; deposition time, 60 min. The uniformity of the deposited241Am was examined with a conventional α-track method with a cellulose nitrate film as a track recording material. Clear tracks on this film were obtained with a polyester film (18 μ) as α-absorber placed between the deposited americium source and the cellulose nitrate film.  相似文献   

15.
A reverse isotope dilution alpha spectrometric /R-IDAS/ method using239Pu as a spike is described for the determination of plutonium concentration in high burn-up fuel samples wth238Pu/(239Pu+240Pu) alpha activity ratio >0.5, without resorting to any purification from241Am and a bulk of other impurities. It involves the addition of a pre-clibrated spike solution to a known aliquot of the plutonium sample solution followed by source preparation using TEG as a spreading agent. The results obtained on a number of plutonium samples containing 20–80% of241Am /alpha activity wise/ using this method are compared with those achieved by R-IDAS using purification with TTA, with respect to precision and accuracy. Precision and accuracy of 0.5% are demonstrated. This method eliminates the need of any separation and purification of plutonium from241Am and a bulk of other impurities like uranium.  相似文献   

16.
As an important radioisotope in nuclear industry and other fields, 241Am is one of the most serious contamination concerns due to its high radiation toxicity and long half-life. Encouraging biosorption of 241Am from aqueous solutions by free or immobilized Rhizopus arrhizus (R. arrhizus) has been observed in our experiments. In this study, the preliminary evaluation on the mechanism was further explored via chemical or biological modification of R. arrhizus using europium as a substitute for americium. The results indicated that in approximately 48 hours R. arrhizus was able for efficient adsorption of 241Am. The pH value of solutions decreased gradually with the uptake of 241Am by R. arrhizus, implying that H+ was released from R. arrhizus via ion-exchange. The biosorption of 241Am by the decomposed cell wall of R. arrhizus was as efficient as by the intact fungus. The adsorption ratio for 241Am by deacylated R. arrhizus dropped, implying that carboxyl functional groups of R. arrhizus play an important role in the biosorption of 241Am. Most of the investigated acidic ions have no significant influence on the adsorption of 241Am, while saturated EDTA can strongly inhibit the biosorption of 241Am by R. arrhizus. When the concentrations of coexistent Eu3+, Nd3+ were 300 times more than that of 241Am, the adsorption ratios would decrease to about 86% from more than 99%. It could be noted by transmission electron microscope (TEM) analysis that the adsorbed Eu is scattered almost in the whole fungus, while Rutherford backscattering spectrometry (RBS) indicated that Ca in R. arrhizus have been replaced by Eu via ion-exchange. The change of the absorption peak structure in the IR spectra implied that there was complexation between metals and microorganism. The results implied that the adsorption mechanism of 241Am by R. arrhizus is very complicated involved ion-exchange, complexation process as well as nonspecific adsorption in the cell wall by static electricity.  相似文献   

17.
As an important radioisotope in nuclear industry and other fields, 241Am is one of the most serious contamination concerns due to its high radiation toxicity and long half-life. The encouraging biosorption of 241Am from aqueous solutions by free or immobilized Saccharomyces cerevisiae (S. cerevisiae) has been observed in our previous experiments. In this study, the preliminary evaluation on mechanism was further explored via chemical or biological modification of S. cerevisiae, and using europium as a substitute for americium. The results indicated that the culture times of more than 16 hours for S. cerevisiae was suitable and the efficient adsorption of 241Am by the S. cerevisiae was able to achieve. The pH value in solutions decreased gradually with the uptake of 241Am in the S. cerevisiae, implying that H+ released from S. cerevisiae via ion-exchange. The biosorption of 241Am by the decomposed cell wall, protoplasm or cell membrane of S. cerevisiae was same efficient as by the intact fungus. However, the adsorption ratio for 241Am by the deproteinized or deacylated S. cerevisiae dropped obviously, implying that protein or carboxyl functional groups of S. cerevisiaece play an important role in the biosorption of 241Am. Most of the investigated acidic ions have no significant influence on the 241Am adsorption, while the saturated EDTA can strong inhibit the biosorption of 241Am on S. cerevisiae. When the concentrations of coexistent Eu3+, Nd3+ were 100 times more than that of 241Am, the adsorption ratios would decrease to 65% from more than 95%. It could be noted by transmission electron microscope (TEM) analysis that the adsorbed Eu is almost scattered in the whole fungus, while Rutherford backscattering spectrometry (RBS) analysis indicated that Ca in S. cerevisiae have been replaced by Eu via ion-exchange. All the results implied that the adsorption mechanism of 241Am on S. cerevisiae is very complicated and at least involved in ion exchange, complexation process as well as well as nonspecific adsorption in cell wall because of static electricity.  相似文献   

18.
The objectives of this study were to establish a ratio for241Am to239Pu in soil at the Rocky Flats Plant and to compare241Am concentrations obtained using in-situ and laboratory gamma spectroscopy measurements to concentrations determined with radiochemical analysis and alpha spectroscopy. Soil samples were collected for radiochemical and laboratory gamma spectroscopy analysis from vertical profiles in 3 cm layers to a depth of 21 cm at predetermined locations along transects oriented in the direction of prevailing winds. The origin for the transects was the center of the 903 Pad at the Rocky Flats Plant, which is believed to be the source for most of the241Am and239Pu contamination. A 100 minute in-situ gamma spectroscopy measurement was made at each soil sample location with a portable HPGe detector. Soil samples were dried, passed through a 2 mm sieve, mixed, and split in two fractions. One fraction was analyzed radiochemically for241Am and239Pu and the second was analyzed using laboratory gamma spectroscopy. The median ratio of241Am to239Pu activities, which appears to be independent of soil depth and distance from suspected sources, was 0.17. There is a strong correlation between241Am and239Pu concentrations determined using radiochemical analysis with alpha spectroscopy and concentrations determined with laboratory gamma spectroscopy. Results from in-situ gamma spectroscopy measurements were also correlated with the radiochemical analyses but exhibited greater variability than laboratory measurements. This on-going investigation has demonstrated that it is possible to indirectly measure239Pu concentrations in soil if the ratio of241Am to239Pu can be established. The results indicate that judicious use of a combination of radiochemical analyses with laboratory and in-situ gamma spectroscopy measurements may provide a cost-effective approach for characterization of large sites where241Am and239Pu contamination occur.  相似文献   

19.
The biosorption of radionuclide 241Am from solution by Saccharomyces cerevisiae (S. cerevisiae), and the effects of experimental conditions on the adsorption were investigated. The preliminary results showed thatS. cerevisiae is a very efficient biosorbent. An average of more than 99% of the total 241Am could be removed by S. cerevisiae of 2.1 g/l (dry weight) from 241Am solutions of 17.54–4386.0 mg/l (2.22 MBq/l–555 MBq/l) with adsorption capacities of 7.45–1880.0 mg/g biomass (dry weight) (0.94 MBq/g–237.9 MBq/g). The adsorption equilibrium was achieved within 1 hour and the optimum pH ranged 1–3. No significant differences on 241Am adsorption were observed at 10–45 °C, or in solutions containing Au3+ or Ag+, even 2000 times above 241Am concentration. The relationship between concentrations and adsorption capacities of 241Am indicated the biosorption process should be described by the Freundlich adsorption isotherm.  相似文献   

20.
The present distributions of 239+240Pu, 241Am and activity ratio of 241Am/239+240Pu in surface seawater of the Peninsular Malaysia east coast were studied. The surface seawater samples were collected at 30 identified stations during the expedition conducted in 2008. 239+240Pu activity concentrations in surface seawater of the studied area were in the range of 2.33 ± 0.20–7.95 ± 0.68 mBq/m3, meanwhile 241Am activity concentrations ranged from MDA to 1.90 ± 0.23 mBq/m3. The calculated activity ratios of 241Am/239+240Pu were varied and disperse distributed with the ranged of 0.12–0.53. The relationships between anthropogenic radionuclide and oceanographic parameters such as turbidity and salinity were examined. The linearly relationships between 239+240Pu and oceanographic parameters are important for better understanding of its transport processes and behavior in the east coast of Peninsular Malaysia marine environment. Thus, the differ of distribution of 239+240Pu, 241Am and 241Am/239+240Pu in the studied area mainly due to high affinity of 239+240Pu to associate with sinking particles, mobility nature of 241Am, degree of particle reactive of both anthropogenic radionuclides, scavenging and removal process; and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号