首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-drop microextraction (SDME) procedure with a modified microsyringe was developed for the analysis of six organophosphorus pesticides (OPPs) in water. Microsyringe was modified by attaching a 2-mm cone onto the needle tip end. The conditions affecting SDME performance including microextraction solvent, stirring speed, extraction time, ionic strength and sample pH were optimized. Under the optimized conditions, the linear ranges of the SDME with ethion as internal standard were 0.05–50 μg L?1 (except for dimethoate 5–5,000 μg L?1) and limits of detection (LOD) were 0.012–0.020 μg L?1 (except for dimethoate 0.45 μg L?1). Recoveries of six pesticides were in the range of 70.6–107.5 % with relative standard deviation lower than 6.0 %. The modified method is simple, rapid and sensitive, and acceptable in the analysis of OPPs pesticides in water samples.  相似文献   

2.
A sensitive method based on derivatization with pentafluorophenylhydrazine then headspace gas chromatography–mass spectrometry has been used for analysis of malondialdehyde in human urine. Preparation of urine sample by one-step derivatization/evaporation was performed by reaction of malondialdehyde with pentafluorophenylhydrazine in a headspace vial for 10 min; the derivatives were then injected in GC–MS analysis. The reaction was performed at pH 3, and total analysis time was 35 min. The method detection limit was 0.04 μg L?1. For MDA concentrations of 2.0 and 10.0 μg L?1 the relative standard deviation was less then 5%. The concentration of MDA in urine was measured to be 0.199 ± 0.252 μmol g?1 creatinine (0.022 ± 0.028 μmol mmol?1 creatinine).  相似文献   

3.
A simple method to detect 4-methylimidazole in soft drinks is described. This method is based on headspace solid-phase micro-extraction and gas chromatography–mass spectrometry (HS-SPME GC–MS). The HS-SPME parameters (selection of fiber, extraction temperature, heating time, and pH) were optimized and selected. Under the established condition, the detection and the quantification limit were 1.9 and 6.0 μg L?1 using 4 mL of the liquid sample, respectively. The relative standard deviation for five independent determinations at 100.0 and 500.0 μg L?1 was less than 8 %. The calibration curve was y = 0.6027x–0.0033 with a linearity of r 2 = 0.997. Using the proposed method, the levels of 4-MEI were detected in a range from 94.0 to 324.8 μg L?1. The comparison of liquid chromatography tandem mass spectrometry (LC–MS/MS) with the proposed method was performed and the agreement with LC–MS/MS for all samples was acceptable.  相似文献   

4.
Dispersive liquid–liquid microextraction (DLLME) for extraction and preconcentration of phenoxyacetic acid herbicides in water samples is described. After adjusting the pH to 1.5, the sample was extracted in the presence of 10% w/v sodium chloride by injecting 1 mL acetone as disperser solvent containing 25 μL of chlorobenzene as extraction solvent. The effect of parameters, such as the nature and amount of extraction and disperser solvents, ionic strength of the sample, pH, temperature and extraction time were optimized. DLLME was followed by LC for the determination of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methyl phenoxyacetic acid. The method had good linearity and a wide linear dynamic range (0.5–750 μg L?1) with a detection limit of 0.16 μg L?1 for both the PAAs, making it suitable for their determination in water samples.  相似文献   

5.
A simple and commercial readily-available approach that enables the direct use of ionic liquid (IL)-based single-drop microextraction (SDME) prior to gas chromatography (GC) is presented. The approach is based on thermal desorption (TD) of the analytes from the IL droplet to the GC system, by using a robust and commercially-available thermodesorption system. For this purpose, a two-glass-tube concentrically disposed system was designed. The inner tube is a laboratory-cut Pyrex tube (20 mm length) that houses the ionic liquid droplet from the SDME process, and the outer tube is a commercially-available TD glass tube (187 mm length) commonly employed for stir-bar sorptive extractions (SBSE). In this way, the proposed device prevents IL from entering the GC system, as this could dirty the inlet or even block the column. The determination of 10 chlorobenzenes in water samples by GC coupled with mass spectrometric (MS) detection has been chosen as model analytical application, showing the feasibility of the proposed approach. The SDME process consists of a 5 μL droplet of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) suspended in the headspace (HS) of a 10 mL stirred sample. After extracting for 37 min at room temperature, the IL droplet is directly placed into the small inner tube, which is placed into the TD tube. The whole device is placed inside the TD unit, where desorption of the analytes is performed at 240 °C for 5 min with a helium flow rate of 100 mL min−1. The analytical figures of merit of the proposed IL-(HS)-SDME-TD-GC–MS approach are very suitable for the determination of chlorobenzenes at ultratrace levels, with relative standard deviation values ranging between 2% and 17%, and limits of detection ranging between 1 and 4 ng L−1, showing the potential offered by the IL-based SDME process with GC.  相似文献   

6.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

7.
A rapid and simple large volume headspace (HS) sampling technique termed headspace solid-phase microcolumn extraction (HS-SPMCE) is described. HS gas above a liquid or solid sample is aspirated by attaching a gas-tight syringe onto a glass thermal desorption tube filled with Tenax sorbent. The trapped analytes are recovered by thermal desorption for gas chromatography–mass spectrometry (GC–MS) analysis. Benzene, toluene, ethylbenzene and the xylene isomers (BTEX) are used as model compounds to demonstrate the application of the extraction procedure for water samples. The results of the tests of the effect of agitation time and aspiration rate on recovery of the analytes show a good robustness of the method. BTEX are determined in the linear range from 0.5 to 50.0 μg L?1 with limits of detection (3 σ) ranging within 0.09–0.14 μg L?1 (MS was in scan mode). The method provides a good repeatability (RSD < 9%) and only a negligible carryover effect was observed ( ≤0.05%) when analysing BTEX at concentration 50.0 μg L?1.  相似文献   

8.
Some aroma compounds found in alcoholic beverages are characteristic of a certain beverage (i.e. 2,4-decadienoic acid ethyl ester is characteristic of pear spirit and 5-butyltetrahydro-4-methylfuran-2-on “whiskey lactone” is characteristic of aged spirits like whiskey). These substances were detectable in beverages but not in blood samples. The aim of this investigation was to find a sensitive sampling technique for aroma compounds in whole blood samples. This technique may be used in forensic toxicology for examination of drinking claims. The method comprises dynamic headspace sampling using a purge and trap concentrator, followed by quantitative gas chromatography–mass spectrometry (dynamic HS–GC–MS). The influence of sample preparation, trap adsorbents and sample temperature as well as desorption time and purge time on the quality of the analytical results were investigated. The following optimal parameters were determined: stirred and diluted whole blood sample without salt addition, use of Carbotrap C as trap material, sample temperature at 80 °C, desorption time 20 min and purge time 30 min. These optimal parameters were used for the determination of detection limits (LOD). The LOD of aroma compounds by means of dynamic headspace sampling were compared with the results of conventional sampling: the static headspace technique. Limits of detection for the aroma compounds with conventional static headspace GC are in the range 400–10,000 μg L?1. Dynamic headspace–GC was found to be a more sensitive sampling technique for most of the aroma compounds investigated (e.g. C4–C8 ethyl esters, benzoic acid ethyl ester, linalool oxide and 4-ethylguaiacol) with detection limits between 1 and 50 μg L?1, but there were also limits to the sampling of substances with lower volatility like decanoic acid ethyl ester, 2,4-decadienoic acid ethyl ester, eugenol and whiskey lactone with detection limits of about 1,000 μg L?1.  相似文献   

9.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

10.
A novel platform for electroanalysis of isoniazid based on graphene-functionalized multi-walled carbon nanotube as support for iron phthalocyanine (FePc/f-MWCNT) has been developed. The FePc/f-MWCNT composite has been dropped on glassy carbon forming FePc/f-MWCNT/GC electrode, which is sensible for isoniazid, decreasing substantially its oxidation potential to +200 mV vs Ag/AgCl. Electrochemical and electroanalytical properties of the FePc/f-MWCNT/GC-modified electrode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, and amperometry. The sensor presents better performance in 0.1 mol L?1 phosphate buffer at pH 7.4. Under optimized conditions, a linear response range from 5 to 476 μmol L?1 was obtained with a limit of detection and sensitivity of 0.56 μmol L?1 and 0.023 μA L μmol?1, respectively. The relative standard deviation for 10 determinations of 100 μmol L?1 isoniazid was 2.5%. The sensor was successfully applied for isoniazid selective determination in simulated body fluids.  相似文献   

11.
A new method for the growth-dependent headspace analysis of bacterial cultures by needle trap (NT)-gas chromatography-mass spectrometry (GC-MS) was established. NTs were used for the first time as enrichment technique for volatile organic compounds (VOCs) in the headspace of laboratory cultures. Reference strains of Escherichia coli and Pseudomonas aeruginosa were grown in different liquid culture media for 48 h at 36 °C. In the course of growth, bacterial culture headspace was analysed by NT-GC-MS. In parallel, the abiotic release of volatile organic compounds (VOC) from nutrient media was investigated by the same method. By examination of microbial headspace samples in comparison with those of uninoculated media, it could be clearly differentiated between products and compounds which serve as substrates. Specific microbial metabolites were detected and quantified during the stationary growth phase. P. aeruginosa produced dimethyl sulfide (max. 125 μg L?1??1) and 2-nonanone (max. 200 μg L?1), whereas E. coli produced carbon disulfide, butanal and indole (max. 149 mg L?1). Both organisms produced isoprene. Graphical Abstract
MVOCs produced by P. aeruginosa and E. coli at T = 36 °C in autoclaved LB + TRP medium   相似文献   

12.
The dicarbonyl compounds glyoxal, methylglyoxal, and dimethylglyoxal have been separated by capillary GC on a 30 m × 0.32 mm i.d. HP-5 column after precolumn derivatization with 2,3-diamino-2,3-dimethylbutane at pH 4. Chromatographic separation was complete in 6 min. Nitrogen was used as carrier gas at a flow rate of 2 mL min?1. Split injection was performed with a split ratio of 10:1 (v/v). The derivatives were monitored by flame-ionization detection, and linear calibration plots were obtained in the ranges 0.06–0.69, 0.05–1.01, and 0.07–1.33 μg mL?1 for glyoxal, methylglyoxal, and dimethylglyoxal, respectively; the respective detection limits were 20, 10, and 10 ng mL?1. Glyoxal and methylglyoxal were analyzed in serum and urine from diabetics and from healthy volunteers. Amounts of glyoxal and methylglyoxal in serum from diabetic patients were 0.19–0.33 and 0.20–0.29 μg mL?1, respectively, with respective relative standard deviations (RSD) of 0.8–1.0 and 0.8–1.1%. Amounts of glyoxal and methylglyoxal in serum from healthy volunteers were 0.05–0.08 and 0.04–0.10 μg mL?1, respectively, with respective RSD of 0.9–1.2 and 1.0–1.2%. Levels of glyoxal and methylglyoxal in urine from diabetic patients were 0.18–0.40 and 0.25–0.36 μg mL?1, respectively.  相似文献   

13.
A novel method was developed for the determination of eight pyrethroids in water samples by liquid–liquid microextraction based on solidification of floating organic droplets followed by gas chromatography with electron capture detection. The type and volume of the extraction solvents, extraction time, sample solution temperature, stirring rate and ionic strength were studied and optimized. Under the optimum conditions, enrichment factors ranged from 824 to 1,432, and the limit of detection range from 2.0 to 50 ng?L?1. The calibration graph is linear from 0.15 to 80 μg?L?1 for cyfluthrin, fenvalerate, fluvalinate and deltamethrin, 0.09 to 80 μg?L?1 for fenpropathrin, 0.006 to 80 μg?L?1 for lambda-cyhalothrin, 0.026 to 80 μg?L?1 for permethrin, 0.01 to 80 μg?L?1 for cypermethrin. The correlation coefficients (r) varied from 0.9961 to 0.9988. The method was successfully applied to the determination of pyrethroid pesticide residues in tap water, well water, reservoir water, and river water. Recoveries ranged from 79.0% to 113.6%, and relative standard deviations are between 4.1% and 8.7%.  相似文献   

14.
A simple, rapid and efficient method termed dispersive liquid–liquid microextraction combined with liquid chromatography-fluorescence detection, has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in water and fruit juice samples. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimum conditions, the enrichment factors ranged from 296 to 462. The linear range was 0.01–100 μg L?1 and limits of detection were 0.001–0.01 μg L?1. The relative standard deviations (RSDs, for 5 μg L?1 of PAHs) varied from 1.0 to 11.5% (n = 3). The relative recoveries of PAHs from tap, river, well and sea water samples at spiking level of 5 μg L?1 were 82.6–117.1, 74.9–113.9, 77.0–122.4 and 86.1–119.3%, respectively. The relative recoveries of PAHs from grape and apple juice samples at spiking levels of 2.5 and 5 μg L?1 were 80.8–114.7 and 88.9–123.0%, respectively. It is concluded that the proposed method can be successfully applied for determination of PAHs in water and fruit juice samples.  相似文献   

15.
We report on a sensitive, simple, label-free impedance-based immunoelectrode for the determination of microcystin-LR (MCLR). The surface of the electrode was modified with a composite made from multiwalled carbon nanotubes and an ionic liquid, and with immobilized polyclonal antibody against MCLR. Cyclic voltammetry and impedance spectroscopy were applied to characterize the modified electrode. It is found that the multi-walled carbon nanotubes act as excellent mediators for the electron transfer between the electrode and dissolved hexacyanoferrate redox pair, while the ionic liquid renders it biocompatible. The method exhibits a wide linear range (0.005 μg?L-1 to 1.0 μg?L-1), a low detection limit (1.7 ng?L-1) and a long-term stability of around 60 days. The ionic liquid 1-amyl-2,3-dimethylimidazolium hexafluorophosphate gave the best impedimetric response. The new immunoelectrode is sensitive, stable, and easily prepared. It has been successfully applied to the determination of MCLR in water samples.
Figure
The immunosensor, modified with a nanocomposite of room temperature ionic liquid- multiwalled carbon nanotube, was applied to detect MCLR. The method exhibits a wide linear range (0.005 μg·L?1 to 1.0 μg·L?1), a low detection limit (1.7 ng·L-1) and a long-term stability of around 60 days.  相似文献   

16.
《Analytical letters》2012,45(6):905-918
The first sequential injection assay for the generic determination of gabapentin and pregabalin is reported. The analytes react with o-phthalaldehyde in the presence of N-acetylcysteine as a nucleophilic reagent in alkaline medium under flow conditions to form highly fluorescent derivatives. The effect of the main instrumental and chemical variables on the assay was examined. The proposed method was validated for both analytes in terms of linearity, detection, and quantitation limits (c L  = 160 μg L?1, c Q  = 480 μg L?1 for gabapentin, and c L  = 70 μg L?1, c Q  = 210 μg L?1 for pregabalin), precision (s r  < 1.0% in both cases), selectivity, and accuracy. The applicability of the assay was demonstrated by successfully analyzing commercially available formulations. The experimental percent recoveries were in the range of 97.9–102.0% for gabapentin and 98.3–102.3% for pregabalin.  相似文献   

17.
An investigation was carried out into the fast determination of five homologue imidazolium cations in ionic liquids by ion chromatography using a cation-exchange column and direct conductivity detection. Ethylenediamine, complex organic acid (citric acid, oxalic acid and tartaric acid) and organic modifiers (acetonitrile) were used as mobile phase. The influences of the eluent types, eluent concentration, eluent pH and column temperature on separation of the cations were discussed. Simultaneous separation and determination of the five homologue imidazolium cations in ionic liquids were achieved under an optimum condition. The optimized mobile phase was consisted of 0.25 mmol L?1 ethylenediamine + 0.5 mmol L?1 citric acid + 3% acetonitrile (v/v) (pH 4.1), set at a flow rate of 1.0 mL min?1. The column temperature was 40 °C and detection limits were obtained in the range of 1.1–45.6 mg L?1. The relative standard deviations of the chromatographic peak areas for the cations were <3.0% (n = 5). This method was successfully applied to separate imidazolium cations in ionic liquids produced by organic synthesis. The recoveries of spiked components were 92.5–101.9%.  相似文献   

18.
《Analytical letters》2012,45(12):1976-1988
A sensitive and selective electrochemical method for the simultaneous determination of dopamine (DA) and uric acid (UA) was developed using a pyrogallol red modified carbon paste electrode. Under the optimized conditions, the peak current was linearly dependent on 1.0–700.0 μmol L?1 DA and 50.0–1000.0 μmol L?1 UA. The detection limits for DA and UA were 0.78 μmol L?1 and 35 μmol L?1, respectively. Finally, this method was also examined for the determination of DA and uric acid in real samples such as drugs and urine.  相似文献   

19.
A stir foam composed of graphene oxide, poly(ethylene glycol) and natural latex (GO-PEG-NL) was prepared for use in micro-solid phase extraction sorbent of preservative agents and antioxidants from cosmetic products. The extracted analytes were quantified by GC-MS. Under the optimized conditions, the calibration plots are linear in the concentration ranges between 5.0 μg·L?1 to 1.0 mg·L?1 for benzoic acid, of 10.0 μg·L?1 to 1.0 mg·L?1 for 2-methyl-3-isothiazolinone (MI), and between 1.0 μg·L?1 and 1.0 mg·L?1 for both 3-tert-butyl-4-hydroxyanisole (BHA) and 2,6-di-tert-butyl-p-hydroxytoluene (BHT). The LODs are 1.0 μg·L?1 for benzoic acid, 5.0 μg·L?1 for MI and 0.5 μg·L?1 for both BHA and BHT. The stir-foam can be easily prepared, is inexpensive and well reproducible (RSDs <3%, for n?=?6). It can be re-used for up to 12 times after which extraction efficiency has dropped to 90%. The method was successfully applied to the determination of preservatives and antioxidants in cosmetic samples. Recoveries from spiked samples ranged between 94.5?±?2.1% and 99.8?±?1.8%.
Graphical abstract A stir foam was prepared from graphene oxide, poly(ethylene glycol) and natural latex (GO-PEG-NL) and is shown to be a most viable sorbent for the microextraction of trace amounts of preservative agents and antioxidants from cosmetic products.
  相似文献   

20.
A piece of copper wire coated with a polypropylene hollow fiber membrane was used as an SPME fiber and its efficiency for extraction of BTEX compounds from the headspace of water samples prior to GC analysis was evaluated. Under optimum extraction conditions, limits of detection for benzene, toluene, ethylbenzene, m-p-xylene, and o-xylene were found to be 0.11, 0.22, 0.26, 0.37, and 0.26 μg L?1, respectively. Low detection limits, wide linear dynamic ranges, good reproducibility (RSD% <4), high fiber capacity and higher mechanical durability are some of the most important advantages of the new fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号