首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《中国化学会会志》2018,65(6):793-800
A new catalyst with uniformly distributed metal oxide is synthesized and characterized. The active centers Cu–ZnO of the designed catalyst are well distributed in the ordered mesoporous carbon FDU‐15 which has very high BET surface area and large pore volume. The effects of the amount of metal oxide loading, calcination temperature, and ramping rate on the resulting catalysts are investigated using N2‐physisorption, X‐ray diffraction, and scanning and electron microscopy. The results show that the Cu–ZnO particle size increases with the metal loading and calcination temperature, whereas it decreases with the ramping rate. When the metal loading is 20%, the calcination temperature is 700 °C, and the ramping rate is 20 °C/min, uniform metal oxide particles well distributed on the carbon support are obtained.  相似文献   

2.
The model RhOx/CeO2 systems were prepared by radio-frequency (RF) plasma sputtering of Rh electrode in O2 or Ar/O2 atmosphere. Thermal stability of the systems and their reaction probability towards CO oxidation were studied by X-ray photoelectron spectroscopy. It was shown that the small oxidized Rh nanoparticles on the CeO2 surface (RhOx/CeO2) obtained by RF sputtering in O2 have spectroscopic characteristics close to those of Rh3+ ions highly dispersed in ceria lattice. The RhOx/CeO2 system remains stable upon heating in vacuum at 450°C and shows reactivity towards CO oxidation at T > 200°C. RF sputtering in Ar/O2 atmosphere results in the formation of larger rhodium nanoparticles that are close to Rh2O3 oxide. The Rh2O3/CeO2 system demonstrates lower activity in CO oxidation and cannot be reduced at a temperature below 300°C.  相似文献   

3.
Oxidation of magnesium in mixtures NaClO4 + Mg + metal oxide or peroxide has been investigated using differential thermal analysis (DTA). In the systems with peroxides Na2O2, Li2O2, BaO2, CaO2 or ZnO, magnesium oxidizes simultaneously with decomposition of NaClO4 in the region 380–520°C, which is 100–200°C below the oxidation temperature of magnesium in air. In the ternary systems with transition-metal oxides NiO, CuO, FeO, and Fe2O3, magnesium transforms into oxide at above 600°C after sodium perchlorate had been decomposed completely. The low-temperature oxidation of magnesium occurs in the systems in which sodium chlorate is accumulated during the catalytic decomposition of NaClO4.  相似文献   

4.
The catalytically active oxide structures based on Al and Ti prepared by plasma-electrolytic oxidation (PEO) and additionally modified by impregnation with an aqueous solution of nickel and copper nitrates followed by annealing were studied. The oxide film-metal composites were studied using X-ray diffraction and X-ray spectroscopic analysis, X-ray electron spectroscopy, and electron microscopy. The catalytic activity of the composites in the reaction of CO oxidation was studied. In spite of differences in the elemental composition and morphology, the initial oxide layers on Al and Ti were comparable in terms of activity. Microgranules of size ~ 1 µm and formations from tens to hundreds of nanometers in size were detected on the surface of PEO layers. The modified layers contained crystalline CuO, NiO, and Al2O3 or TiO2 phases. The surface layers of the modified structures about 3 nm in thickness on AMg5 aluminum alloy and VT1-0 titanium had the same elemental composition but exhibited different activity in the reaction of CO oxidation to CO2.  相似文献   

5.
In this work, the electro-catalytic oxidation of phenol was studied using the aluminum oxide supported onto activated carbon (Al2O3/AC). The later was successfully prepared by impregnating aluminum particles in the activated carbon (AC) using heat treatment. Al2O3/AC was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The electro-catalytic performance of the Al2O3/AC for phenol oxidation was studied using cyclic voltammetry (CV), chronoamperometry, linear sweep voltammetry polarization, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) in 0.1 mol L?1 Na2SO4. It has been shown that the proposed catalyst exhibits remarkably an electro-catalytic performance toward phenol oxidation. Moreover, the oxidation peak currents are linearly dependent on the concentration of phenol in the wide ranges from 1.0 × 10?3 mol L?1 to 1.0 × 10?4 mol L?1 and 8.0 × 10?5 mol L?1 to 1.0 × 10?6 mol L?1 with a detection limit of 1.51 × 10?7 mol L?1 (signal (S) to noise (N) ratio, S/N = 3) and response time of 3 min. The possible interferences were evaluated in 1.0 × 10?5 mol L?1 of phenol. The proposed catalyst also indicated suitable repeatability and stability. Moreover, the proposed Al2O3/AC–CPE has been successfully applied for the phenol analysis in natural waters and olive oil samples with good recoveries.  相似文献   

6.
ZnO thin films were grown by pulsed laser deposition on titanium substrates at different substrate temperatures ranging from 300 to 700 °C. X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS),photoluminescence, and Raman spectroscopy are employed to investigate the change of properties. XRD, XPS, and Raman data showed that the films consisted of TiO2 at high substrate temperature, which will deteriorate the crystallization quality of ZnO films. The optimum temperature for the growth of ZnO films on the Ti substrate is about 500 °C in this paper. The ZnO films grown on titanium substrate can be used in direct current, microwave, and medical applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Ti/Zn-TiO2 electrodes were successfully prepared by the co-deposition method, on a titanium substrate, using an acidic zinc sulphate solution with TiO2 nanoparticles in suspension. After electrodeposition, samples were heated in air at 450?°C for 6?h. The X-ray diffraction analysis of the deposits point to the metal matrix modification from Zn to ZnO. In addition, the scanning electron microscopy results indicate that the films have a high surface area with a rich morphology, due to the appearance of ZnO needle-shaped grains. The voltammograms recorded, in Na2SO4 solution, for these electrodes under illumination at λ?=?365?nm confirmed the films photoactivity. Photoelectrochemical degradation of Ibuprofen (Ibu) was achieved with the Zn-TiO2 electrodes after thermal treatment. UV–Vis spectrometry, high-performance liquid chromatography (HPLC), chemical oxygen demand (COD) and total organic carbon (TOC) measurements were performed and data demonstrated that Ibuprofen was efficiently degraded. Absorbance at 220?nm, COD and TOC removals of 35%, 34% and 23%, respectively, were obtained after a 3 h period.  相似文献   

8.
Nickel nanoparticles/TiO2 nanotubes/Ti electrodes were prepared by galvanic deposition of nickel nanoparticles on the TiO2 nanotubes layer on titanium substrates. Titanium oxide nanotubes were fabricated by anodizing titanium foil in a DMSO fluoride‐containing electrolyte. The morphology and surface characteristics of titanium dioxide nanotubes and Ni/TiO2/Ti electrodes were investigated using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The results indicated that nickel nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The electrocatalytic behaviour of nickel nanoparticles/TiO2/Ti electrodes for the methanol electrooxidation was studied by electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and chronoamperometry methods. The results showed that Ni/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the oxidation of methanol.  相似文献   

9.
A new efficient method for the synthesis of extended micro-and nano-sized crystals (whiskers, fibers) of titanium glycolate Ti(OCH2CH2O)2 has been suggested. The method implies the reaction of hydrated titanium dioxide with ethylene glycol on heating in air. Thermolysis of Ti(OCH2CH2O)2 in air gives titanium dioxide as anatase (400–500°C) and rutile (T > 700°C), the morphology of titanium glycolate crystals being inherited by the oxide. The pseudocrystals of the thermolysis product in an inert gas medium (T = 500–950°C) represent aglomeration of nano-sized titanium dioxide particles and amorphous carbon. At temperatures up to 1300°C, the formation of the TiO2?x C x phase with a rutile structure is probable. In a wet air environment, titanium glycolate is partially hydrolyzed to give TiO x (OCH2CH2O)2?2x (OH)2x ·xH2O (0 ≤ x ≤ 1) and on keeping in water at room temperature, ethylene glycol is completely displaced from the crystals. This process is also not accompanied by changes in the particle morphology.  相似文献   

10.
In the present work, we have investigated the formation of nanostructured oxide layers by anodic oxidation on different surface finished (mirror finished, 600 and 400 grit polished) nickel–titanium alloy (Ni–Ti) in electrolyte solution containing ethylene glycol and NH4F. The anodized surface has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and X‐ray photoelectron spectroscopy (XPS). The corrosion behaviors of the Ni–Ti substrate and anodized samples have been investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization in simulated body fluid (Hanks' solution). The results show that the native oxide on the substrate is replaced by nanostructures through anodization process. XPS of Ni–Ti substrate shows the presence of Ni0, NiO, Ti0 and TiO2 species, whereas Ni2O3 and Ni(OH)2 and TiO2 are observed in the samples after anodization. Corrosion resistance of the anodized sample is comparable with that of the untreated sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Nitrogen doped zinc oxide (ZnO) nanoparticles have been synthesized using a colloidal route and low temperature nitridation process. Based on these results, 200 nm thick transparent ZnO thin films have been prepared by dip-coating on SiO2 substrate from a ZnO colloidal solution. Zinc peroxide (ZnO2) thin film was then obtained after the chemical conversion of a ZnO colloidal thin film by H2O2 solution. Finally, a nitrogen doped ZnO nanocrystalline thin film (ZnO:N) was obtained by ammonolysis at 250 °C. All the films have been characterized by scanning electron microscopy, X-ray diffraction, X-Ray photoelectron spectroscopy and UV–Visible transmittance spectroscopy.  相似文献   

12.
Clinoptilolite-supported TiO2 (TiO2/CPMOCVD) has been synthesized by metal organic chemical vapor deposition method (MOCVD). Titanium precursor was evaporated at 110 °C under nitrogen flow rate to promote the surface interaction between titanium species and clinoptilolite. The effect of titanium precursor on the crystalline structure and the surface area of clinoptilolite were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), transformed infrared spectroscopy (FT-IR), Raman spectroscopy, and Brunauer–Emmett–Teller measurement. XRD and SEM results indicate that TiO2 precursor interacted with the support, decreasing the crystallinity of the clinoptilolite. The analysis by FT-IR spectroscopy further confirms that the titanium species were bound to clinoptilolite through Ti–O–Si bonds. The TiO2/CPMOCVD catalyst showed a mesoporous structure with the distribution of pores in several dimensions 3.7–7.1 nm, with high specific surface area (~ 471 m2/g). MOCVD improved the adsorption capacity of the catalyst surface towards the pollutants. TiO2/CPMOCVD particles turn yellow after adsorption of salicylic acid. The development of the yellow color is a clear indication of the formation of charge transfer titanium (IV) salicylate surface complex. Photocatalytic decomposition of SA in aqueous solution was carried out using TiO2/CPMOCVD. Experimental results revealed that TiO2/CPMOCVD required shorter irradiation time (120 min) for complete decomposition of SA than commercial P25 Degussa and TiO2/CPimp (clinoptilolite-supported TiO2 using impregnation method). The TiO2/CPMOCVD can be recycled at least four times without loss in activity, indicating their magnificent stability.  相似文献   

13.
Nanostructured TiO2–SnO2 thin films and powders were prepared by a facile aqueous particulate sol–gel route. The prepared sols showed a narrow particle size distribution with hydrodynamic diameter in the range 17.2–19.3 nm. Moreover, the sols were stable over 5 months, since the constant zeta potential was measured during this period. The effect of Sn:Ti molar ratio was studied on the crystallisation behaviour of the products. X-ray diffraction analysis revealed that the powders were crystallised at the low temperature of 400 °C containing anatase-TiO2, rutile-TiO2 and cassiterite-SnO2 phases, depending on annealing temperature and Sn:Ti molar ratio. Furthermore, it was found that SnO2 retarded the anatase to rutile transformation up to 800 °C. The activation energy of crystallite growth was calculated in the range 0.96–6.87 kJ/mol. Transmission electron microscope image showed that one of the smallest crystallite sizes was obtained for TiO2–SnO2 binary mixed oxide, being 3 nm at 600 °C. Field emission scanning electron microscope analysis revealed that the deposited thin films had nanostructured morphology with the average grain size in the range 20–40 nm at 600 °C. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response towards low concentrations of CO gas at low operating temperature of 200 °C, resulting in increased thermal stability of sensing films as well as a decrease in their power consumption.  相似文献   

14.
Anatase titanium dioxide nanotubes were prepared by hydrothermal synthesis with subsequent annealing in a nitrogen atmosphere. The outer diameter of particles is 10–15 nm, their inner diameter is 4–6 nm, and their length is several hundreds of nanometers. The structural transformation of polytitanic acid to TiO2, which preserves the tubular morphology until 500°C, was studied by X-ray powder diffraction and thermal analyses, scanning and transmission electron microscopies, and IR and Raman spectroscopies.  相似文献   

15.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
TiO2 nanocrystallites were prepared from precursors tetra-n-butyl titanate (Ti(OC4H9)4) and titanium tetrachloride (TiCl4). The precursors were hydrolyzed by gaseous water in autoclave, and then calcined at predetermined testing temperatures. The samples were characterized by X-ray diffraction (XRD), thermogravimetry–differential thermal analysis (TG–DTA), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectra (FT-IR), and UV–vis diffuse reflectance spectra (DRS). The photocatalytic activities of the samples were evaluated by the photobleaching of methylene blue (MB) in aqueous solution and the photocatalytic oxidation of propylene in gas phase at ambient temperature. The results showed that the anatase phase nanocrystalline TiO2 could be obtained at relatively low temperatures (for precursor Ti(OC4H9)4 at 110 °C and for TiCl4 at 140 °C, respectively), and that the as prepared samples exhibited high photocatalytic activities to photobleach MB in aqueous solution. As the calcination temperatures increasing, the decolor ratio of MB increased and reached the maximum value of nearly 100% at 600 °C, and then decreased. The photobleaching of MB by all samples followed the pseudo-first-order kinetics with respect to MB concentration. The photodecomposition amount of propylene by TiO2 nanocrystallites calcined at 600 °C from precursor of Ti(OC4H9)4 is 21.6%, which is approaching to that by Degussa P25 TiO2 (24.9%).  相似文献   

17.
The effect of minor Ti additions content (0% Ti, 0.4% Ti, 1% Ti, 2% Ti) on the oxidation behaviour of Ni-20Cr-10Al-0.4Y (in weight-%) model alloys was investigated in the temperature range 950° C to 1100° C up to 200 h in Ar – 20% O2. Alloy microstructure, oxide scale morphology and microstructure of the scale were characterized by SEM/EDX and TEM. The growth mechanisms of the alumina scales formed on the model alloys were studied by two-stage oxidation experiments with 18O2-tracer and subsequent SNMS-analyses. The microstructural observations were correlated with the oxide scale properties in respect to growth rates and spalling resistance, which was tested during cyclic oxidation. Received: 24 June 1996 / Accepted: 18 November 1996  相似文献   

18.
Butene-1 was polymerized using novel mono-(η5-pentamethylcyclopentadienyl) tribenzyloxy titanium[Cp*Ti(OBz)3] complexes activated with three types of modified methylaluminoxanes (mMAO) containing different amounts of residual trimethylaluminum (TMA). The oxidation states of titanium in different Cp*Ti(OBz)3 and mMAO catalytic systems were determined by redox titration method. The influences of various oxidation state of titanium active species on butene-1 polymerization were investigated. It is found that Ti(IV) active species is in favour of producing polybutene-1. The polymer obtained at 0°C and 30°C with melting temperature was shown by 13C-NMR and DSC characterizations to comprise of multiple blocks of isotactic and atactic segments. 13C-NMR analyses of polybutene-1 implies that chain propagation of butene-1 involves primarily head-to-tail 1,2-insertions, with involving negligible proportion of head-to-head and tail-to-tail 2,1-misinsertions. There is a remarkable decrease in 2,1-misinsertions with decreasing temperature of polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4497–4501, 1999  相似文献   

19.
Pd nanoparticle/Ti electrodes are prepared by electroless plating of palladium on titanium plates. The morphology and surface analysis of Pd nanoparticle/Ti electrodes are investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The results indicate that palladium nanoparticles are homogeneously deposited on the surface of titanium plates. The electro-catalytic activity of Pd nanoparticle/Ti electrodes in the methanol electro-oxidation is studied by cyclic voltammetry and chronoamperometry methods. The results show that the electro-catalytic oxidation of methanol on the Pd nanoparticle/Ti electrode improved compare to pure palladium electrode and confirmed the better electro-catalytic activity and stability of these new electrodes.  相似文献   

20.
Sol–gel processing of ZnO nanocolloids has been revisited to prepare various alkaline metal acetate (MAc: K, Na, Li-acetates) containing ZnO nanopowders. Using differential scanning calorimetry and X-ray diffraction investigations, several new relationships between the morphology and the thermodynamic behavior in the aforementioned particulate ZnO/MAc nanocomposites were noticed: (1) large MAc melting depression shifts ?ΔTm ~ 80 °C due to salt confinement within porous ZnO aggregates, (2) corresponding MAc crystallization and re-crystallization temperature depression shifts, (3) presence of multimodal pore size distributions within nanoaggregates and (4) glass formation at temperatures Tg between ?40 and 130 °C. We also note that the Tg value drops with rising alkaline metal size, increasing water content and decreasing ZnO particle size. In contrast, Tg rises in the case of co-doped Fe–LiAc/ZnO compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号