首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peptide-coated surfaces are widely employed in biomaterial design, but quantifiable correlation between surface composition and biological response is challenging due to, for example, instrumental limitations, a lack of suitable model surfaces or limitations in quantitatively correlating data from different surface analytical techniques. Here, we first establish a reference material that allows control over amino acid content. Reversible addition-fragmentation chain-transfer (RAFT) polymerisation is used to prepare a copolymer containing alkyne and furan units with well-defined chain length and composition. Huisgen Cu(I)-catalysed azide-alkyne cycloaddition reaction is used to attach the model azido-polyethyleneglycol-amide-modified pentafluoro-l -phenylalanine to the polymer. Different compositional ratios of the polymer provide a surface with varying amino acid content that is analysed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nitrogen-related signals are compared with fluorine signals from both techniques. Fluorine and nitrogen signals from both techniques are found to be related to the copolymer compositions, but the homopolymer data deviate from this trend. The approach is then translated to a heparin-binding peptide that supports cell adhesion. Human embryonic stem cells cultured on copolymer surfaces presenting different amounts of heparin-binding peptide show strong cell growth while maintaining pluripotency after 72 h of culture. The early cell adhesion at 24 h can be correlated to the logarithm of the normalised CH4N+ ion intensity from ToF-SIMS data, which is established as a suitable and generalisable marker ion for amino acids and peptides. This work contributes to the ability to use ToF-SIMS in a more quantitative manner for the analysis of amino acid and peptide surfaces.  相似文献   

2.
The use of ToF-SIMS and XPS in industrial research is demonstrated by a number of applications of surface analysis within Akzo Nobel: surface treatment of carbon fibers, adhesion activation of aramid fibers, weathering and protection of wood, surfactant adsorption on pigments, grafting of polypropylene with acrylic monomers and treatment of a perfluorinated membrane with an amphiphile. The examples illustrate the broad use of these techniques on non-conducting organic and polymeric materials.  相似文献   

3.
The chemical composition of the functional surfaces of substrates used for microarrays is one of the important parameters that determine the quality of a microarray experiment. In addition to the commonly used contact angle measurements to determine the wettability of functionalized supports, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are more specific methods to elucidate details about the chemical surface constitution. XPS yields information about the atomic composition of the surface, whereas from ToF-SIMS, information on the molecular species on the surface can be concluded. Applied on printed DNA microarrays, both techniques provide impressive chemical images down to the micrometer scale and can be utilized for label-free spot detection and characterization. Detailed information about the chemical constitution of single spots of microarrays can be obtained by high-resolution XPS imaging. Figure Eye-catching image for the graphical online abstract  相似文献   

4.
The chemical analysis of microparticles is challenging due to the need to mount the particles on a substrate for analysis; double-sided adhesive tape is often used (sometimes conductive), however that is usually coated with poly (dimethyl siloxane) (PDMS) that is often used as a release agent. PDMS is a common surface contamination that can mask surface chemistries and hinder material performance where it is dependent on this contaminated interface. It is known that PDMS contains a very mobile oligomeric fraction that readily diffuses across surfaces resulting in the contamination of mounted particulate samples before and during surface chemistry analysis. This makes it impossible to determine whether the PDMS has arisen from the analysis procedure or from the sample itself. A new sample preparation method is proposed where polymer microparticles are mounted on a poly (hydroxyethyl methacrylate) (pHEMA) polymer solution, which we compare with particles that have been mounted on adhesive discs using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and 3D OrbiSIMS analysis. Particles mounted on the pHEMA substrate results in a reduction of PDMS signal by 99.8% compared with microparticles mounted on adhesive discs. This illustrates how a simple, quick and inexpensive polymer solution can be used to adhere particles for analysis by ToF-SIMS, or other surface chemical analysis techniques such as X-ray photoelectron spectroscopy (XPS), without introduction of large amounts of silicone contaminant.  相似文献   

5.
The contribution given by surface analysis to solve some problems encountered in the production of electronic power devices have been discussed. Mainly two types of problems have been faced. One of these deal with interfacial chemistry. Three examples have been investigated. The first applies to the improvement of the quality and the reliability of plastic packages through the optimization of the resin/metal and resin/die adhesion. The second relies to the adhesion between polyimide and silicon nitride used in the multilevel technology. The third example refers to the so called die-attach process and related problems. Another area of interest in microelectronics is that of the erosion of various types of surfaces and the possibility of wrong etching. A few examples of the application of surface analytical techniques for these problems will be presented. XPS and SIMS working in imaging and multipoint analysis mode, scanning acoustic microscopy, contact angle measurements as well as peeling and tensile strength measurements are the main tools used to obtain useful data.  相似文献   

6.
The contribution given by surface analysis to solve some problems encountered in the production of electronic power devices have been discussed. Mainly two types of problems have been faced. One of these deal with interfacial chemistry. Three examples have been investigated. The first applies to the improvement of the quality and the reliability of plastic packages through the optimization of the resin/metal and resin/die adhesion. The second relies to the adhesion between polyimide and silicon nitride used in the multilevel technology. The third example refers to the so called die-attach process and related problems. Another area of interest in microelectronics is that of the erosion of various types of surfaces and the possibility of wrong etching. A few examples of the application of surface analytical techniques for these problems will be presented. XPS and SIMS working in imaging and multipoint analysis mode, scanning acoustic microscopy, contact angle measurements as well as peeling and tensile strength measurements are the main tools used to obtain useful data.  相似文献   

7.
The surface analysis of wood and wood products is becoming increasingly important for reasons ranging from the investigation of molecular constituents through to the optimization of industrial processes. As with any natural product, wood analysis is not straightforward, and this review aims to provide guidance for the successful surface analysis of wood by XPS and ToF-SIMS. Through example experiments, three themes are addressed relevant to obtaining meaningful results: considerations related to heterogeneity in the composition of wood (e.g., growth rings); the impact of the chemical removal of minor wood components known as extractives, and whether such a process is necessary; and the potential for misleading or erroneous results as a result of contamination occurring during sample preparation. In addition to discussing successful sample preparation approaches, the important role to be played by MVA in surface analysis is emphasized, particularly in the analysis of ToF-SIMS data. Examples of ToF-SIMS/MVA are provided that highlight the identification of contamination in sample preparation, the quantification of wood composition in terms of cellulose and lignin, and the indication of age of softwood samples. Through consideration of the complexities that influence wood surface analysis, the design and interpretation of consequential experiments become easier and more accurate.  相似文献   

8.
利用射频感性耦合冷等离子体(ICP)处理技术改性连续纤维表面,分别采用X射线光电子能谱(XPS)、原子力显微镜(AFM)及动态接触角分析(DCA)系统研究了等离子体处理时间、放电气压、放电功率等工艺参数对连续碳纤维、芳纶纤维和对亚苯基苯并二噁唑(PBO)纤维的表面化学成分、表面形貌、表面粗糙度及表面自由能的影响.研究结...  相似文献   

9.
The surface chemistry of amorphous zinc polyphosphates of different compositions (ranging from zinc metaphosphate to zinc orthophosphate) has been investigated by means of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). The identification of the chain length of zinc polyphosphates by XPS was on the basis of the integrated intensity ratio of the bridging (P–O–P) and nonbridging (P = O and P–O–M) oxygen peaks used for fitting the oxygen 1s signal, the shift of the P 2p3/2 signal towards lower binding energies and the modified Auger parameter towards higher values as the zinc content increases. The discrimination of the polyphosphate chain lengths was also achieved by ToF-SIMS, by comparing the intensities of selected characteristic phosphate fragments. Both techniques appear to be suitable for the investigation of polyphosphate glasses in applications such as tribology, where there is a need to identify the chain length present in the outermost monolayer of the film. Fourier-transform infrared (FT-IR) spectroscopy was used to characterize the bulk compounds. The FT-IR studies showed that long-chain structures linked through P–O–P bonds predominate in the metaphosphate composition, while when the zinc content is increased, the chains become shorter, ultimately being replaced by PO4 monomers in the orthophosphate composition.  相似文献   

10.
Adhesion of bacterial strains on solid substrates is likely related to the properties of the outer shell of the micro-organisms. Aiming at a better understanding and control of the biofilm formation in seawater, the surface chemical composition of three marine bacterial strains was investigated by combining Fourier transform IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS). The D41 strain surface showed evidence of proteins, as deduced from the NH2 and NCO XPS and ToF-SIMS fingerprints; this strain was found to adhere to stainless steel, glass, or Teflon surfaces in a much higher quantity (2 orders of magnitude) than the two other ones, DA and D01. The latter are either enriched in COOH or sulfates, and this makes them more hydrophilic and less adherent to all substrates. Correlations with physicochemical properties and adhesion seem to demonstrate the role of the external layer composition, in particular the role of proteins more than that of hydrophobicity, on their adhesion abilities.  相似文献   

11.
The earliest stages of thermal oxidation of 6 nm diameter silicon nanoparticles by molecular oxygen are examined using a tandem differential mobility analysis (TDMA) apparatus, Fourier-transform infrared (FTIR) spectroscopy, time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). Particles are synthesized in and then extracted from a nonthermal RF plasma operating at approximately 20 Torr into the atmospheric pressure TDMA apparatus. The TDMA apparatus was used to measure oxidation-induced size changes over a broad range of temperature settings and N2-O2 carrier gas composition. Surface chemistry changes are evaluated in situ with an FTIR spectrometer and a hybrid flow-through cell, and ex situ with ToF-SIMS and XPS. Particle size measurements show that, at temperatures less than approximately 500 degrees C, particles shrink regardless of the carrier gas oxygen concentration, while FTIR and ToF-SIMS spectra demonstrate a loss of hydrogen from the particles and minimal oxide formation. At higher temperatures, FTIR and XPS spectra indicate that an oxide forms which tends toward, but does not fully reach, stoichiometric SiO2 with increasing temperature. Between 500 and 800 degrees C, size measurements show a small increase in particle diameter with increasing carrier gas oxygen content and temperature. Above 800 degrees C, particle growth rapidly reaches a plateau while FTIR and XPS spectra change little. ToF-SIMS signals associated with O-Si species also show an increase in intensity at 800 degrees C.  相似文献   

12.
Strong adhesion of hydrogels on solids plays an important role in stable working for various practical applications. However, current hydrogel adhesion suffers from poor interfacial bonding with solid surfaces. Here, we propose a general superwetting-assisted interfacial polymerization (SAIP) strategy to robustly anchor hydrogels onto solids by forming high-density interfacial covalent bonds. The key of our strategy is to make the initiator fully contact solid surfaces via a superwetting way for enhancing the interfacial grafting efficiency. The designed anchored hydrogels show strong bulk failure with a high breaking strength of ≈1.37 MPa, different from weak interfacial failure that occurs in traditional strategies. The strong interfacial adhesion greatly enhances the stability of hydrogels against swelling destruction. This work opens up new inspirations for designing strongly anchored hydrogels from an interfacial chemistry perspective.  相似文献   

13.
Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL–PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL–PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL–PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL–PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL–PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has been exposed to human serum.
Figure
?  相似文献   

14.
The valence band and core‐level photoelectron spectroscopy [using X‐ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS)] were used to probe the interfacial reaction between glass and a commercial adhesive (Loctite). The interaction was investigated by comparing experimental valence band spectra with spectra calculated for various possible interaction schemes. The valence band spectrum for the interfacial region between the glass and the adhesive was obtained using difference spectra on a thin film of adhesive on glass. This film was sufficiently thin that the adhesion interphase could be directly probed. Chemical interaction occurs at the interface as evidenced by the fact that the spectrum for the interfacial region could not be represented by the addition of the spectrum of the glass alone and the adhesive alone. The XPS valence band spectrum and the UPS spectrum showed that the shallow top surface layer is very much enriched in acrylic acid, which is a minor component in the adhesive. When the Loctite adhesive was coated on glass, the C1s and O1s regions of the adhesion interface region showed evidences of new chemistry at the adhesive–glass interface. The possible reactions were evaluated by comparison of the experimental spectra with calculated ones based on different models using ab initio molecular orbital calculations. The experimental spectra are well represented by models where the acrylic acid of the surface region of the adhesive reacts with the glass, suggesting chemical interaction occurred at the adhesion interphase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The influence of chain lengths on interfacial performances of carbon fiber/polyarylacetylene composites was studied. For this purpose, four coupling agents, methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and dodecyltrimethoxysilane, were grafted onto fiber surface to obtain different chain lengths. The resulting carbon fiber surface was characterized by XPS and dynamic contact angle test. Interfacial adhesion in the resulting fiber reinforced polyarylacetylene resin composites was also evaluated by fracture morphology analysis and interfacial shear strength test. It was found that the interfacial adhesion in composites greatly increased with chain lengths on fiber surface. The improvement of interfacial adhesion was attributed to the interaction between the chain of coupling agents on fiber surface and that of polyarylacetylene resin at the interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Epoxy resin composites reinforced with E-glass (E), 3D glass (3D) and carbon fibre (CF) were subjected to an intense UV and high temperature accelerated degradation environment. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide a molecular characterisation of the surface of the degraded composites. The response at the surface of the epoxy resin composites to oxidative degradation is influenced by the composite reinforcement type and characteristics. XPS results indicate that 3D resin composites exhibit more surface oxidation as a result of the accelerated degradation in comparison with E and CF composites. Principal components analysis (PCA) of the ToF-SIMS positive ion spectra showed that E and 3D resin composites suffered chain scission while CF composites suffered chain scission and cross-linking reactions as a result of the intense UV exposure. The extent of the surface oxidation, cross-linking/condensation reaction and loss of low molecular weight (lower than C4Hx) aliphatic hydrocarbons may be indicated using PCA of both the ToF-SIMS positive and negative ion spectra. PCA also provides insight for proposing epoxy resin chain scission and oxidation reaction mechanisms.  相似文献   

17.
Interfacial adhesion between the fiber and the matrix in a composite is a primary factor for stress transfer from the matrix to the fiber. In this study, oxygen plasma treatment method was applied to modify the fiber surface for improving interfacial adhesion of aramid fiber‐reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composite. Composite interfacial adhesion properties were determined by interlaminar shear strength (ILSS) using a short‐beam bending test. The composite interfacial adhesion mechanism was discussed by SEM. The changes of chemical composition and wettability for plasma‐treated fiber surfaces stored in air as long as 10 days were investigated by XPS and dynamic contact angle analysis (DCAA), respectively. Results indicated that oxygen plasma treatment was an effective method for improving interfacial adhesion; plasma‐treated fiber surface suffered aging effects during storage in air. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Studies on PAN-based carbon fibers irradiated by Ar+ ion beams   总被引:2,自引:0,他引:2  
In this work, the effects of Ar+ ion beam irradiation on carbon fibers were studied using tensile and surface analytical techniques. The single-fiber pull-out test was executed in order to characterize the fiber/epoxy matrix interfacial adhesion. The Ar+ ion beam was irradiated using an ion-assisted reaction (IAR) method in reactive gas conditions under an oxygen environment with 1 x 10(16) ions/cm(2) Ar+ ion dose (ID), 6 sccm blown gas flow rate, and different ion beam energy intensities. From the experimental results, both the interfacial shear strength (IFSS) and fracture toughness (Gi) were found to increase with increasing Ar+ ion irradiation intensity. This was probably due to the fact that Ar+ ion beam irradiation on carbon fibers was effective in altering their surface physical chemistry and structural morphology, resulting in improved interfacial adhesion in the fiber/epoxy matrix. The reliability of single-fiber pull-out test data could be improved by statistical analysis using the Weibull distribution, which served to predict the variation of the mechanical interfacial properties in a composite system.  相似文献   

19.
Methylated quartz surfaces are extensively used in colloid science for wettability studies and the control and impact of hydrophobicity in key physicochemical processes. In this study, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to correlate the surface chemistry of trimethylchlorosilane-methylated quartz surfaces with the contact angle. Models have been developed for the calculation of both advancing and receding contact angles based on measurements of the ToF-SIMS signals for SiC(3)H(9)(+) (TMCS) and Si(+) (quartz). These models enable the contact angle across surfaces and, more importantly, that of individual particles to be determined on a micrometer scale. Distributions of contact angles in large ensembles of particles, therefore, can now be determined. In addition, from the ToF-SIMS analysis, the surface coverage of the methylated species can be quantitatively determined, in line with the Cassie equation. Moreover, advancing and receding contact angle maps can be calculated from ToF-SIMS images, and hence the variation in microscopic hydrophobicity (e.g., at the particle level) can be extracted directly from the images.  相似文献   

20.
Changes in surface physicochemical structures of polyacrylonitrile‐based carbon fibers resulted from low current density electrochemical oxidation were monitored by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The relationship between the interlaminar shear strength (ILSS) values of carbon fiber‐reinforced polymers (CFRPs) and carbon fiber surface chemistry including elemental ratios and the relative content of oxygen‐containing functional groups were researched. SEM results revealed that the electrochemical oxidation got rid of surface contaminants generated during the production process. XPS analysis showed that the relative contents of oxygen and nitrogen increased by 446% and 202%, respectively, after the electrochemical oxidation. Carbon fiber surface chemistry was of paramount importance to the interfacial properties of CFRPs. The higher the carbon fiber surface activity, the better the interfacial bonding was, and an increase in the acidic‐group contents was responsible for a higher ILSS value. However, when the current density increased to 1.0 A/m2, the interfacial bonding between carbon fiber and the epoxy resin became weak which led to the decline in ILSS values. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号