首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poly(thionine) thin film modified electrode was successfully assembled on the surface of the glassy carbon electrode by means of electrochemical polymerization, which was carried out with cyclic voltammetric sweeping in the potential range 0 to +1.4 V (vs. Ag/AgCl) in perchloric acid solution containing 0.1 mmol L?1 thionine. The film modified electrode exhibited a couple of well-defined redox peaks, and the redox peaks decreased correspondingly without a shift of the peak potential after the addition of heparin. The conditions of the binding reaction and the electrochemical detection were optimized. Under the optimum conditions the decrease of the peak current was proportional to the concentration of heparin in the range 4.0 to 22.0 μg mL?1 and the detection limit was 0.28 μg mL?1. The relative standard deviation (RSD) for five parallel determinations of 10.0 μg mL?1 heparin was 0.93%. The effects of potentially interfering species were investigated and the method was successfully applied to the determination of heparin in a pharmaceutical formulation.  相似文献   

2.
《Analytical letters》2012,45(9):1750-1762
Abstract

The interaction between clozapine (CLZ) as an orally administrated antipsychotic drug with double stranded calf thymus DNA (dsDNA) was investigated at electrode surface using differential pulse voltammetry (DPV). Activated carbon paste electrode (CPE) was modified with dsDNA and used for monitoring the changes of the characteristics peak of CLZ in 0.05 M acetate buffer (pH 4.3). The adsorptive stripping voltammetry on dsDNA‐modified carbon paste electrode (dsDNA‐CPE) was used for determination of very low concentration of CLZ. Under optimal conditions, the oxidation peak current is proportional to CLZ concentration in the range of 7×10?9?1.2×10?6 mol l?1 with a detection limit of 1.5×10?9 mol l?1 for 180 s accumulation time by DPV. The proposed dsDNA‐CPE was successfully used for determination of CLZ in human serum samples with recovery of 97.0±2.5%.  相似文献   

3.
《Analytical letters》2012,45(5):763-777
A multiwall carbon nanotube titanium dioxide nanoparticle modified carbon paste electrode was used for direct determination of methimazole. The nanoparticles in the carbon paste increased the surface area of the electrode and improved the sensitivity by enhancing the peak current. The electrochemical behavior of methimazole on the modified electrode was investigated. Experimental variables such as pH and electrode composition were optimized. At the optimum pH 7.0 (universal buffer), the modified electrode had a linear dynamic range of 0.5 to 100.0 μmol L? 1 (0.1–11.4 ppm) with a limit of detection of 0.17 μmol L? 1 . The application of the electrode for the determination of methimazole in pharmaceuticals and blood serum was investigated.  相似文献   

4.
In order to develop a renewable electrode surface, carbon nanofibers (CNF) were embedded into solidified paste electrodes using a composite of paraffin wax and paraffin oil. A range of different compositions was surveyed and the optimal composition of the paste for electroanalysis was found to be 43% of CNF, 41% of paraffin wax, and 16% of paraffin oil. The electrochemical properties of the novel composite electrode were investigated using cyclic voltammetry and electrochemical impedance spectroscopy and compared to those of similar graphite—solidified paste electrodes. The carbon nanofibers enhance the activity of the surface of the electrode and provide a good substrate for the adsorption and voltammetric detection of dsDNA. Responses of dsDNA bases and Ni2+ ions accumulated from ammonium buffer pH 8.5 (with a Langmuirian binding constant of 105 mol?1 L) were investigated and a limit of detection of 7 nmol L?1 (at 3σ) was obtained using “nucleation stripping voltammetry”. Interferences by other metal cations are examined and discussed.  相似文献   

5.
A new strategy is described to construct disposable electrochemical immunosensors for the assay of human immunoglobulin. It is based on a carbon paste electrode constructed from chitosan nanoparticles modified with colloidal gold. The stepwise assembly process of the immunosensor was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. Assay conditions that were optimized included the amount of chitosan nanoparticles in the preparation of carbon paste electrode, antibody concentration, and the incubation time of the antibody immobilization. Using hexacyanoferrate as a mediator, the current change increased with the concentration of human immunoglobulin G. A linear relationship in the concentration range 0.3 to 120 ng mL?1 was achieved, with a detection limit of 0.1 ng mL?1 (S/N?=?3). The method combines the specificity of the immunological reaction with the sensitivity of the gold colloid amplified electrochemical detection, and it has potential application in clinical immunoassay.  相似文献   

6.
The oxidation of acetaminophen was studied at a glassy carbon electrode modified with multi-walled carbon nanotubes and a graphite paste. Cyclic voltammety, differential pulse voltammetry and square wave voltammetry at various pH values, scan rates, and the effect of the ratio of nanotubes to graphite were investigated in order to optimize the parameters for the determination of acetaminophen. Square wave voltammetry is the most appropriate technique in giving a characteristic peak at 0.52 V at pH 5. The porous nanostructure of the electrode improves the surface area which results in an increase in the peak current. The voltammetric response is linear in the range between 75 and 2000 ng.mL?1, with standard deviations between 0.25 and 7.8%, and a limit of detection of 25 ng.mL?1. The method has been successfully applied to the analysis of acetaminophen in tablets and biological fluids.  相似文献   

7.
In this study, we demonstrated a highly sensitive electrochemical sensor for the simultaneous detection of Pb (II) and Cd (II) in aqueous solution using carbon paste electrode modified with Eichhornia crassipes powder by square wave anodic stripping voltammetry. The effect of modifier composition, pH, preconcentration time, reduction potential and time, and type of supporting electrolyte on the determination of metal ions were investigated. Pre-concentration on the modified surface was performed at open circuit. The modified electrode exhibited well-defined and separate stripping peaks for Pb (II) and Cd (II). Under optimum experimental conditions, a linear range for both metal ions was from 10 to 5000 μg L?1 with the detection limits of 4.9 μg L?1, 2.1 μg L?1 for Cd(II) and Pb (II), respectively. The modified electrode was found to be sensitive and selective when applied to determine trace amounts of Cd (II) and Pb (II) in natural water samples.  相似文献   

8.
An electrochemical oxidation route was developed for sensitive and selective assay of nitrotriazolone (NTO) explosive in some environmental samples on a multi-walled carbon nanotube (MWCNTs)/TiO2 nanocomposite paste electrode, for prevention of the analytical interference of conventional reducible energetic compounds. Detailed evaluations were made for the electrochemical behaviour of NTO on the modified electrode by adsorptive stripping voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry techniques in the pH range of 2.0–10.0. Parameters such as diffusion coefficient constant of NTO were calculated, and various experimental conditions were also optimised. Under optimal conditions the calibration curve had two linear dynamic ranges of 130.0–3251.5 μg L?1 and 6.5–26.0 mg L?1 with a detection limit of 26.0 μg L?1 (0.2 μmol L?1) and precision of <3%. This electrochemical sensor was further applied to determine NTO in real soil and water samples with satisfactory results.  相似文献   

9.
A highly sensitive electrochemical sensor for determination of L-cysteine (CySH) is presented. It is based on vertically aligned multiwalled carbon nanotubes modified with Pt nanoparticles by magnetron sputtering deposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive. The electrochemistry of CySH was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The mechanism for the electrochemical reaction of CySH at the modified electrode at different pH values is discussed. The electrode exhibits a higher electrocatalytic activity towards the oxidation of CySH than comparable other electrodes. It displays a linear dependence (R 2?=?0.9980) on the concentration of CySH in the range between 1 and 500 μM and at an applied potential of +0.45 V, a remarkably low detection limit of 0.5 μM (S/N?=?3), and an outstandingly high sensitivity of 1.42?×?103 μA?mM?1?cm?2, which is the highest value ever reported. The electrode also is highly inert towards other amino acids, creatinine and urea. The sensor was applied to the determination of CySH in urine with satisfactory recovery, thus demonstrating its potential for practical applications.
Figure
Pt nanoparticles on carbon nanotubes by sputtering deposition show high performance for L-cysteine sensing  相似文献   

10.
A carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (Fe3O4 NP) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL BMI.PF6) was employed for the electroanalytical determination of estrone (E1) by square-wave voltammetry (SWV). At the modified electrode, cyclic voltammograms of E1 in B–R buffer (pH 12.0) showed an adsorption-controlled irreversible oxidation peak at around +0.365 V. The anodic current increased by a factor of five times and the peak potential shifted 65 mV to less positive values compared with the unmodified CPE. Under optimized conditions, the calibration curve obtained showed two linear ranges: from 4.0 to 9.0 μmol L?1 and from 9.0 to 100.0 μmol L?1. The limits of detection (LOD) and quantification (LOQ) attained were 0.47 and 4.0 μmol L?1, respectively. The proposed modified electrode was applied to the determination of E1 in pork meat samples. Data provided by the proposed modified electrode were compared with data obtained by UV–vis spectroscopy. The outstanding performance of the electrochemical device indicates that Fe3O4 NP and the IL BMI.PF6 are promising materials for the preparation of chemically modified electrodes for the determination of E1.  相似文献   

11.
In this paper, an electrochemical application of bismuth film modified glassy carbon electrode for azo-colorants determination was investigated. Bismuth-film electrode (BiFE) was prepared by ex-situ depositing of bismuth onto glassy carbon electrode. The plating potential was ?0.78 V (vs. SCE) in a solution of 0.15 mg mL?1 Bi(III) and 0.05 mg mL?1 KBr for 180 s. In the next step, a thin film of chitosan was deposited on the surface of bismuth modified glassy carbon electrode, thus the bismuth-chitosan thin film modified glassy carbon electrode (Bi-CHIT/GCE) was fabricated and compared with bare GCE and bismuth modified GCE. Azo-colorants such as Sunset Yellow and Carmoisine were determined on these electrodes by differential pulse voltammetry. Due to overlapping peaks of Sunset Yellow and Carmoisine, simultaneous determination of them is not possible, so net analyte signal standard addition method (NASSAM) was used for this determination. The results showed that coated chitosan can enhance the bismuth film sensitivity, improve the mechanical stability without caused contamination of surface electrode. The Bi-CHIT/GC electrode behaved linearly to Sunset Yellow and Carmoisine in the concentration range of 5×10?6 to 2.38×10?4 M and 1×10?6 to 0.41×10?4 M with a detection limit of 10 µM (4.52 µg mL?1) and 10 µM (5.47 µg mL?1), respectively   相似文献   

12.
In the present work, we investigated the immobilization and electrochemical behavior of Reactive Blue 4 dye on 3-aminopropyl-functionalized silica. The electrochemical behavior of the modified electrode and the electro-oxidation of dipyrone were studied by cyclic voltammetry. The modified electrode showed a well-defined redox coupling with a formal potential of 0.45 V (vs. saturated calomel reference electrode) assigned to anthraquinone/anthrahydroquinone redox process (pH?=?2). The modified electrode also demonstrated electrocatalytic activity and an increased peak current towards the oxidation of dipyrone at a reduced overall potential. The electrocatalytic process was found to be highly dependent on the pH of the supporting electrolyte. The voltammetric responses for dipyrone were linear in the concentration range of 49.9 to 440 μmol L?1 at a pH of 2.0 with a detection limit and sensitivity of 22.0 μmol L?1 and 0.0278 μA mmol L?1, respectively.  相似文献   

13.
A method based on capillary electrophoresis with electrochemical detection has been developed for the separation and determination of epicatechin, isovanillic acid, vanillic acid and myricetin in Dioscorea bulbifera L. and its medicinal preparations. The effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time were investigated. Under optimum conditions, the analytes could be separated in a 40 mmol L?1 borate buffer (pH 8.7) within 15 min. A 300 μm diameter carbon disk electrode has a good response at + 0.95 V (vs. SCE) for all analytes. The response was linear over three orders of magnitude with detection limits (S/N = 3) ranging from 3.0 × 10?8 g mL?1 to 1.0 × 10?7 g mL?1. The method has been successfully applied to the analysis of real samples.  相似文献   

14.
《Analytical letters》2012,45(7):1289-1298
Abstract

Poly (acridine orange) (PAO) film–modified electrode was prepared by the electrooxidation of Acridine orange on a glassy carbon electrode (GCE) for the detection of hydroquinone in the presence of o‐hydroquinone and m‐hydroquinone. The electrochemical behavior of hydroquinone on the modified electrode was investigated with respect to different solution acidity, scan rate, and accumulation time. A pair of sharp and well‐defined peaks was obtained at 0.45 and 0.42 V [vs. a saturated calomel electrode (SCE)] at the PAO film–modified electrode. The potential difference between this pair of cathodic and anodic peaks was decreased to only 30 mV as compared to the 241 mV that was obtained on the bare glassy carbon electrode (GCE). As to o‐hydroquinone and m‐hydroquinone, their corresponding oxidation peaks appeared at 0.55 V and 0.89 V (vs. SCE), respectively. The oxidation potential differences between these three isomers enabled the separate detection of hydroquinone. Under the optimum experimental situation, the oxidation peak current of hydroquinone was proportional to the concentration at the range of 6.8×10?7–9.6×10?5 M. The detection limit was been estimated as 3×10?7 M with 130 s accumulation. This method was applied to the hydroquinone detection in tap water samples.  相似文献   

15.
Solid-phase nanoextraction is a sample preparation technique, which combines nanotechnology with analytical chemistry, and brings analytical chemistry to a higher level, particularly for complex system analysis. This paper describes a typical example of electrochemical solid-phase nanoextraction and electrochemical detection. Trace amounts of copper (5.0?×?10?13?mol/L) were extracted by electrochemical solid-phase nanoextraction on to the magnesium oxinate nanoparticle-modified carbon paste electrode surface in a pH?7.2 phosphate buffer system at ?0.50 V for 100 s. The extraction is achieved by the cation exchange between copper(II) in the aqueous solution and magnesium(II) from the magnesium oxinate nanoparticles on the electrode surface. The extracted copper shows an irreversible anodic peak at about 0.2 V (vs. saturated calomel electrode). The peak current is proportional to the scan rate, which shows this to be a surface-controlled process. The oxidation peak current is proportional to the logarithm of the copper concentration in the range 5.0?×?10?13?~?5.0?×?10?7?M with a slope of 2.215. This powerful method uses the carbon paste electrode to combine extraction with electrochemical analysis.  相似文献   

16.
A new modified carbon paste electrode based on multi-walled carbon nanotube and Alizarin Red S acts as a chelating agent for tellurium(IV) ions, is described. The electrochemical responses were found to be analytically suitable to develop a method for the determination of tellurium at low concentration levels. Under optimised operational conditions, the sensor exhibited linear behaviour in the range of 2.0–300 ng mL?1 (correlation coefficient: 0.9982) with a detection limit of 0.45 ng mL?1. The results indicate that the sensor is sensitive and effective for the determination of tellurium in water samples and certified reference materials.  相似文献   

17.
《Analytical letters》2012,45(12):1976-1988
A sensitive and selective electrochemical method for the simultaneous determination of dopamine (DA) and uric acid (UA) was developed using a pyrogallol red modified carbon paste electrode. Under the optimized conditions, the peak current was linearly dependent on 1.0–700.0 μmol L?1 DA and 50.0–1000.0 μmol L?1 UA. The detection limits for DA and UA were 0.78 μmol L?1 and 35 μmol L?1, respectively. Finally, this method was also examined for the determination of DA and uric acid in real samples such as drugs and urine.  相似文献   

18.
ABSTRACT

In this approach, a new carbon paste electrode modified with N,N′-bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine Schiff base ligand (L) was synthesised for selective and effective determination of Hg2+ ions in aqueous environmental samples using cyclic and square wave anodic stripping voltammetric methods. First, the selective detection of mercury ion was confirmed by evaluating the stability constants of metal complexes formed between the Schiff base ligand (L) and some desired cations by conductometric measurements. Afterwards, by preparing an effective carbon paste electrode modified with L, the experimental and instrumental parameters affecting the performance of modified electrode were investigated. Square wave anodic stripping voltammograms were obtained after applying an accumulation potential ?0.5 V and accumulation time 150 s in Britton–Robinson buffer solution at pH 2.0. The optimal square wave parameters found are pulse amplitude 75 mV, frequency 50 Hz and step potential 6 mV. The procedure exhibited linear range from 0.4 to 120 μg L?1 Hg2+ with a limit of detection of 0.042 μg L?1. The proposed electrode was proved to be highly selective in the presence of various cations and anions and was successfully used for determination of mercury in tobacco and several water samples.  相似文献   

19.
The electrochemical oxidation of fipronil is investigated on unmodified and multi-walled carbon-nanotube (MWCNT)-modified glassy carbon electrodes (GCEs), and its amperometric determination using batch injection analysis (BIA) is demonstrated. An oxidation peak was observed at 1.5 V in a 0.1 mol L?1 HClO4/acetone solution (50:50, v/v) on both surfaces. Although MWCNT-modified GCE provided greater sensitivity, the unmodified GCE showed low RSD value, wider linear range, and reduced adsorption of fipronil or its oxidized products on the electrode surface. A detection limit of 4.7 μmol L?1 and linear range of 25–300 μmol L?1 were obtained using a bare GCE. The method was applied in veterinary formulations with results in agreement with those obtained by high-performance liquid chromatography.  相似文献   

20.
A carbon paste electrode based on γ-cyclodextrin–carbon nanotube composite (γ-CD–CNT–CME) was developed for the determination of propranolol hydrochloride (PRO). The electrochemical behaviour of PRO was investigated employing cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse adsorptive stripping voltammetry (DPAdSV). Surface morphology of the electrode has been studied by means of scanning electron microscopy. The results revealed that the oxidation of PRO is facilitated at γ-CD–CNT–CME. Under the optimized conditions in Britton–Robinson buffer pH 1.5, the peak currents were found to vary linearly with their concentrations in the range of 1.42 × 10?7 to 4.76 × 10?5 M. A detection limit (S/N = 3) of 4.01 × 10?8 M was obtained for PRO by means of DPAdSV. The proposed method was employed for the determination of PRO in pharmaceutical formulations, urine and blood serum samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号