首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoretic separations on microfluidic chips   总被引:1,自引:0,他引:1  
Wu D  Qin J  Lin B 《Journal of chromatography. A》2008,1184(1-2):542-559
This review presents a brief outline and novel developments of electrophoretic separation in microfluidic chips. Distinct characteristics of microchip electrophoresis (MCE) are discussed first, in which sample injection plug, joule heat, channel turn, surface adsorption and modification are introduced, and some successful strategies and recognized conclusions are also included. Important achievements of microfluidic electrophoresis separation in small molecules, DNA and protein are then summarized. This review is aimed at researchers, who are interested in MCE and want to adopt MCE as a functional unit in their integrated microsystems.  相似文献   

2.
Gao Y  Shen Z  Wang H  Dai Z  Lin B 《Electrophoresis》2005,26(24):4774-4779
Chiral separations of FITC-labeled basic drugs on multichannel microfluidic chips with LIF detector were investigated. A preliminary screening procedure for seven neutral CDs was performed under optimized conditions for chiral separations of three FITC-labeled drugs (baclofen, norfenefrine, and tocainide) on a mono-channel microfluidic chip. According to the results of screening, FITC-baclofen and FITC-norfenefrine as well as two chiral selectors including gamma-CD and dimethyl-beta-CD (DM-beta-CD) were selected as models to perform chiral separations on a two-channel chip. FITC-baclofen enantiomers were separated completely by gamma-CD in one channel, while resolution of FITC-norfenefrine enantiomers was achieved by DM-beta-CD in the other channel in the same run. Furthermore, the feasibility of using one chiral selector to separate multiple chiral samples was studied on a four-channel chip. These results show that multichannel chip has a potential for chiral high-throughput screening.  相似文献   

3.
Research combining the areas of separation science and microfluidics has gained popularity, driven by the increasing need to create portable, fast, and low analyte-consumption devices. Much of this research has focused on the developments in electrophoretic separations, which use the electrokinetic properties of analytes to overcome many of the problems encountered during system scale-down. In addition, new physical phenomenon can be exploited on the microscale not available in standard techniques. In this study, the innovative developments, including electrophoretic concentration, sample preparation/conditioning, and separation on-chip are reviewed, along with some introductory discussions, from January 2008 to July 2010.  相似文献   

4.
Photopolymerized silica sol–gel monoliths, functionalized with boronic acid ligands, have been developed for protein and peptide separations in polydimethylsiloxane microfluidic devices. Pore size characterization of the monoliths was carried out with SEM, image analysis, and differential scanning calorimetry to evaluate both the micron‐sized macropores and the nanometer‐sized mesopores. Monoliths were functionalized with boronic acid using three different immobilization techniques. Batch experiments were conducted to determine the capacity of the monoliths and selectivity toward cis‐diol‐containing compounds. Conalbumin was used as a model glycoprotein, and a tryptic digest of the glycoprotein horseradish peroxidase was used as a peptide mixture to demonstrate proof‐of‐concept extraction of glycoproteins and glycopeptides by the monoliths formulated in polydimethylsiloxane microfluidic chips. For proteins, fluorescence detection was used, whereas the peptide separations employed off‐line analysis using MALDI‐MS.  相似文献   

5.
Du XG  Fang ZL 《Electrophoresis》2005,26(24):4625-4631
A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).  相似文献   

6.
7.
Dutta D  Ramsey JM 《Lab on a chip》2011,11(18):3081-3088
Microchannels in microfluidic devices are frequently chemically modified to introduce specific functional elements or operational modalities. In this work, we describe a miniaturized hydraulic pump created by coating selective channels in a glass microfluidic manifold with a polyelectrolyte multilayer (PEM) that alters the surface charge of the substrate. Pressure-driven flow is generated due to a mismatch in the electroosmotic flow (EOF) rates induced upon the application of an electric field to a tee channel junction that has one arm coated with a positively charged PEM and the other arm left uncoated in its native state. In this design, the channels that generate the hydraulic pressure are interconnected via the third arm of the tee to a field-free analysis channel for performing pressure-driven separations. We have also shown that modifications in the cross-sectional area of the channels in the pumping unit can enhance the hydrodynamic flow through the separation section of the manifold. The integrated device has been demonstrated by separating Coumarin dyes in the field-free analysis channel using open-channel liquid chromatography under pressure-driven flow conditions.  相似文献   

8.
A new, versatile architecture is presented for microfluidic devices made entirely from glass, for use with reagents which would prove highly corrosive for silicon. Chips consist of three layers of glass wafers bonded together by fusion bonding. On the inside wafer faces a network of microfluidic channels is created by photolithography and wet chemical etching. Low dead-volume fluidic connections between the layers are fabricated by spark-assisted etching (SAE), a computer numerical controlled (CNC)-like machining technique new to microfluidic system fabrication. This method is also used to form a vertical, long path-length, optical cuvette through the middle wafer for optical absorbance detection of low-concentration compounds. Advantages of this technique compared with other, more standard, methods are discussed. When the new glass-based device for flow-injection analysis of ammonia was compared with our first-generation chips based on silicon micromachining, concentration sensitivity was higher, because of the longer path-length of the optical cuvette. The dependence of dispersion on velocity profile and on channel cross-sectional geometry is discussed. The rapid implementation of the devices for an organic synthesis reaction, the Wittig reaction, is also briefly described.  相似文献   

9.
The correct choice of the elution conditions to break an affinity interaction is important for the successful purification of biomolecules. The optimal elution buffer liberates the bound substance in a minimum volume and maintains the activity of the purified material. The present study demonstrates an enzyme-linked immunosorbent assay (ELISA)-based approach for selection of specific elution conditions for eluting antibodies against a small molecule (atrazine) from pooled sera. Six different elution conditions were tried for the removal of antibodies from the complex. Large-scale purification of anti-atrazine antibodies from the sera was done with a hapten-specific column using an amino-terminal crosslinked agarose gel. Efficacy in terms of total amount of recovery and binding affinities of eluted antibodies from the column were further investigated by ELISA. Results indicate that the ELISA-based elution approach is ideal for the selection of suitable elution buffer that can subsequently be utilized for affinity purification applications.  相似文献   

10.
A precolumn reaction chamber was integrated into a polyester microfluidic device with a miniaturized detection system. The reaction chamber was designed to be a zigzag channel, 70 microm in width, 8 mm in length, followed by a wider straight channel, 150 microm in width, 2 mm in length. The detection system is composed of an embedded light-emitting diode (LED), an integrated optical fiber, and a photomultiplier tube (PMT). A success in amino acid analysis using the integrated microchemical analysis device proved that the precolumn reaction chamber was compatible with the integrated detection system. Three kinds of amino acids, arginine, glycine, and phenylalanine, mixed and reacted with 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F) in the precolumn reaction chamber to produce fluorescent products, were separated by micellar eletrokinetic chromatography (MEKC) and detected by LED-excited fluorescence. The detection limits for arginine, glycine, and phenylalanine were 1, 1, and 0.5 mM, respectively, which can be improved by further optimizations of the reaction system and detection system.  相似文献   

11.
Wu CH  Yang RJ 《Electrophoresis》2006,27(24):4970-4981
This paper presents a T-form electrokinetic injection system for the discrete time-based loading and dispensing of samples of variable-volume in a microfluidic chip. A novel push-pull effect is produced during the loading and dispensing processes by the application of an appropriate control voltage distribution. The experimental and numerical results show that this push-pull loading technique produces compact sample plugs and hence improves the detection resolution of the microfluidic device. The injection system is integrated with a microflow switch, and a suitable voltage control scheme is proposed to guide the sample to the desired outlet port such that the microfluidic device can function as a microdispenser. The time-based variable-volume T-form injection method presented in this study is performed using a compact geometry and a simple control scheme and can be readily integrated with other microfluidic devices to form a microfluidic system capable of continuous monitoring and analysis of bioreactions in the life science and biochemistry fields.  相似文献   

12.
This paper reports a prototype for a standard connector between a microfluidic chip and the macro world. This prototype demonstrate a fully functioning socket for a microchip to access the outside world by means of fluids, data signals and energy supply. It supports up to 10 channels for the input and output of liquids or gases, as well as compressed air or vacuum lines for pneumatic power lines. The socket has built-in valves for each flow channel. It also contains 28 pins for the connection of electrical signals and power. Built-in valves make it possible to control the flow in each channel independently. A chip ( 11.0 x 11.0 x 0.9 mm) can be mounted into or dismounted from the socket with one touch. The fluidic connectors of the socket are designed to contact vertically on the top of chip. And the electrical connectors (the spring array) of that physically support the chip and contact lead pads at the bottom of chip. No adhesives or solders are used at any contact points. The pressure limit for the connection of working fluids was 0.2 MPa and the current limit for the electrical connections was 1 A. This socket supports both serial and parallel processing applications. It exhibits great potential for developing microfluidic systems efficiently.  相似文献   

13.
14.
Roman GT  Kennedy RT 《Journal of chromatography. A》2007,1168(1-2):170-88; discussion 169
Over the past decade a tremendous amount of research has been performed using microfluidic analytical devices to detect over 200 different chemical species. Most of this work has involved substantial integration of fluid manipulation components such as separation channels, valves, and filters. This level of integration has enabled complex sample processing on miniscule sample volumes. Such devices have also demonstrated high throughput, sensitivity, and separation performance. Although the miniaturization of fluidics has been highly valuable, these devices typically rely on conventional ancillary equipment such as power supplies, detection systems, and pumps for operation. This auxiliary equipment prevents the full realization of a "lab-on-a-chip" device with complete portability, autonomous operation, and low cost. Integration and/or miniaturization of ancillary components would dramatically increase the capability and impact of microfluidic separations systems. This review describes recent efforts to incorporate auxiliary equipment either as miniaturized plug-in modules or directly fabricated into the microfluidic device.  相似文献   

15.
Polymer microfluidic chips for electrochemical and biochemical analyses   总被引:4,自引:0,他引:4  
Our recent developments concerning the fabrication of polymer microchips and their applications for biochemical analyses are reviewed. We first describe two methods of fabrication of polymer microfluidic chips, namely UV-laser photoablation and plasma etching that are well suited for the prototyping and mass fabrication of microchannel networks with integrated microelectrodes. These microanalytical systems can be coupled with various detection means including mass spectrometry, and their applications in capillary electrophoresis are presented here. We also present how UV laser photoablation can be used for the patterning of biomolecules on polymer surfaces for generating two-dimensional arrays of microspots to carry out affinity assays. Finally, the use of the microchips for the development of fast affinity and immunological assays with electrochemical detection is presented, demonstrating the potential of these polymer microchips for medical diagnostics and drug discovery.  相似文献   

16.
17.
Pittman JL  Schrum KF  Gilman SD 《The Analyst》2001,126(8):1240-1247
A recently developed technique for monitoring electroosmotic flow (EOF) in capillary electrophoresis by periodic photobleaching of a neutral fluorophore added to the running buffer has been further characterized and optimized and then applied to monitoring EOF during a typical capillary electrophoresis separation. The concentration of neutral fluorophore (rhodamine B) added to the running buffer for monitoring EOF has been decreased by one order of magnitude. The rate at which EOF can be measured has been increased from 0.2 to 1.0 Hz by decreasing the distance between the bleaching beam and the laser-induced fluorescence detector from 6.13 to 0.635 mm. The precision of the measured EOF ranges from 0.2 to 1.8%. Under typical experimental conditions, the dynamic range for flow measurements is 0.066 to 0.73 cm s(-1). Experimental factors affecting precision, signal-to-noise (S/N) ratio and dynamic range for EOF monitoring have been examined. This technique has been applied to measure EOF during a separation of phenolic acids with analyte detection by UV/VIS absorbance. The EOF monitoring method has been shown not to interfere with UV/VIS absorbance detection of analytes.  相似文献   

18.
19.
Wu H  Huang B  Zare RN 《Lab on a chip》2005,5(12):1393-1398
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the contact area of the two surfaces with a negligible portion exposed to the microfluidic channel. This method is demonstrated by bonding microfluidic channels of two representative soft materials (PDMS substrate on a PDMS plate), and two representative hard materials (glass substrate on a glass plate). The effects of the adhesive layer on the electroosmotic flow (EOF) in glass channels are calculated and compared with the experimental results of a CE separation. For a channel with a size of approximately 10 to 500 microm, a approximately 200-500 nm thick adhesive layer creates a bond without voids or excess material and has little effect on the EOF rate. The major advantages of this bonding method are its generality and its ease of use.  相似文献   

20.
In order to fully realize the separation power of comprehensive two-dimensional gas chromatography (GC x GC), a means of predicting and optimizing separations based on operating variables was developed. This approach initially calculates the enthalpy (DeltaH) and entropy (DeltaS) for the target compounds from experimental input data, and then uses this information to simultaneously optimize all column and runtime variables, including stationary phase composition, by comparing the performance of large numbers of simulated separations. This use of computer simulation has been shown to be a useful aid in conventional separations. It becomes almost essential for GC x GC optimization because of the large number of variables involved and their very complex interaction. Agreement between experimental and predicted values of standard test samples (Grob mix) using GC x GC separation shows that this approach is accurate. We believe that this success can be extended to more challenging mixtures resulting in optimizations that are simpler and transferable between GC x GC instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号