首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L?1, the precision is better than 4.5 % (at a level of 0.1 μg L?1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions.
Figure
A method integrating pre-concentration, in situ photo-reduction and slurry photochemical vapor generation by using TiO2 nanoparticles was developed for sensitive determination of total selenium in various water samples by atomic fluorescence spectrometry.  相似文献   

2.
Liu Y  Liang P  Guo L 《Talanta》2005,68(1):25-30
Nanometer titanium dioxide immobilized on silica gel (immobilized nanometer TiO2) was prepared by sol-gel method and characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorptive potential of immobilized nanometer TiO2 for the preconcentration of trace Cd, Cr, Cu and Mn was assessed in this work. The metal ions studied can be quantitative retained at a pH range of 8-9, and 0.5 mol L−1 HNO3 was sufficient for complete elution. The adsorption capacity of immobilized nanometer TiO2 for Cd, Cr, Cu and Mn was found to be 2.93, 2.11, 6.69 and 2.47 mg g−1, respectively. A new method using a microcolumn packed with immobilized nanometer TiO2 as sorbent has been developed for the preconcentration of trace amounts of Cd, Cr, Cu and Mn prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The method has been successfully applied for the determination of trace elements in some environmental samples with satisfactory results.  相似文献   

3.
A new method for solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed using 1,5-diphenylcarbazide doped magnetic Fe3O4 nanoparticles as extractant. The surface treatment did not result in the phase change of Fe3O4. Various factors which influenced the recovery of the analyte were investigated using model solutions and batch equilibrium technique. The maximum adsorption occurred at pH?>?6, and equilibrium was achieved within 5 min. Without filtration or centrifugation, these mercury loaded nanoparticles could be separated easily from the aqueous solution by simply applying an external magnetic field. At optimal conditions, the maximum adsorption capacity was 220 μmol g?1. The mercury ions can be eluted from the composite magnetic particles using 0.5 mol L?1 HNO3 as a desorption reagent. The detection limit of the method (3σ) was 0.16 μg L?1 for cold vapor atomic absorption spectrometry, and the relative standard deviation was 2.2%. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The method was applied to the preconcentration and determination of trace inorganic mercury(II) in natural water and plant samples with satisfactory results.  相似文献   

4.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

5.
A new method has been developed for the determination of gold based on separation and preconcentration with a microcolumn packed with nanometer TiO2 immobilized on silica gel (immobilized nanometer TiO2) prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of gold, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Gold could be quantitatively retained by immobilized nanometer TiO2 in the pH range of 8-10, then eluted completely with 0.1 mol L−1 HNO3. The detection limit of this method for Au was 0.21 ng mL−1 with an enrichment factor of 50, and the relative standard deviation (R.S.D.) was 1.8% at the 100 ng mL−1 Au level. The method has been applied for the determination of trace amounts of Au in geological and water samples with satisfactory results.  相似文献   

6.
A new magnetic adsorbent, 3-mercaptopropionic acid coated 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticle, was synthesised and used for the extraction and preconcentration of arsenic ions in aqueous solutions followed by electrothermal atomic absorption spectrometric determination. The adsorbent was characterised by TEM, SEM, XRD and FT-IR techniques and the method used the unique properties of magnetic nanoparticles, namely, high surface area and superparamagnetism which gave it the advantages of high extraction capacity, fast separation and low adsorbent consumption. Different parameters affecting extraction efficiency of the analyte including pH value, sample volume, adsorbent amount, extraction time and desorption conditions were investigated and optimised. Under the optimum conditions, wide linear range of 30–25,000 ng L?1 and low detection limit of 10 ng L?1 were obtained. The interday and intraday precisions (as RSD%) for five replicates determination of 50 and 25,000 ng L?1 of arsenic ions were in the range of 2.3–3.2%. Furthermore, no significant interference was observed in the presence of coexisting ions and high preconcentration factor of 198 was obtained. The adsorption isotherm followed Langmuir model and its kinetic was second-order. The accuracy of the method was validated by analysing certi?ed reference materials for water and rice with satisfactory recoveries. Finally, the proposed method was successfully applied for the determination of ultra-trace amounts of arsenic in rice and water samples.  相似文献   

7.
A flow injection on-line preconcentration system was developed for the determination of lead by hydride generation atomic fluorescence spectrometry (HG-AFS). It is based on a simple micro-column filled with multiwalled carbon nanotubes (MWCNTs). The preconcentration of lead on the MWCNTs was carried out based on the adsorptive retention of analyte via on-line introducing the sample into the micro-column system. A 0.3 mol L?1 HNO3 was introduced to elute the retained analyte and merged with KBH4 solution for HG-AFS detection. Under the optimal experimental conditions, an enhancement factor of 26 was obtained with a sample consumption of 14.4 mL. The limit of detection was 2.8 ng L?1 and the precision (RSD) of 11 replicate measurements of 0.2?μg L?1 Pb was 4.4%. The method was validated by analyzing three certified reference materials, and was successfully applied to the determination of trace lead in natural water samples.  相似文献   

8.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

9.
A simple and sensitive method is presented for solid phase extraction (SPE) and preconcentration of trace quantities of beryllium using octadecyl silica gel modifed with aurin tricarboxylic acid (aluminon). Beryllium is then determined by flame atomic absorption spectroscopy. Parameters affecting SPE such as pH, sample solution and eluent flow rate, type, concentration and volume of eluent, interfering ions and breakthrough volume, were investigated. Under optimal conditions, the beryllium ions were retained on the sorbent at pH 6–6.7, while 3.0 mL of 0.05 mol L?1 HNO3 is sufficient to elute the ions. The limit of detection (LOD) based on 3σ was 0.8 µg L?1 for 250 mL sample solution and 5 mL 0.05 mol L?1 HNO3 as eluent. The LOD can reach 0.1 µg L?1 for 1 L sample solution and 3 mL of 0.05 mol L?1 HNO3. The accuracy and precision (RSD %) of the method is >90% and <10%, respectively. The method was applied to the determination of beryllium in aqueous samples.  相似文献   

10.
A solid phase extraction procedure for the separation and preconcentration of trace amounts of Cd(II) and Pb(II) using the alizarin red S modified TiO2 nanoparticles prior to their determination by flame atomic absorption spectrometry has been proposed. The influences of some analytical parameters such as pH, flow rates of sample and eluent, type and concentration of the eluent, and interfering ions on the recovery of Cd(II) and Pb(II) by the sorbent were investigated. The analytes were quantitatively sorbed from the aqueous solution at pH 5.5 onto a microcolumn packed with the sorbent and recovered with 2.0?mL of 1.5?mol?L?1 hydrochloric acid. Under the optimum experimental conditions, the detection limits for Cd(II) and Pb(II) were 0.11 and 0.30?ng?mL?1 and the relative standard deviations for ten replicate measurements of 5.0 and 50.0?ng?mL?1 of Cd(II) and Pb(II) were 2.1 and 1.9%, respectively. A sample volume of 200?mL resulted in a preconcentration factor of 100. The method was successfully applied to the determination of Cd(II) and Pb(II) in water and biological samples, and accuracy was examined by the recovery experiments, independent analysis using electrothermal atomic absorption spectrometry, and analysis of a water standard reference material (SRM 1643e).  相似文献   

11.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

12.
In the present work, titanium dioxide nanowires (TNWs) were synthesised via hydrothermal method. Insertion of ZnFe2O4 nanoparticles to the surface of TNWs was done by sol gel combustion synthesis of the nanoparticles in the presence of the nanowires. The surface of prepared magnetic TNWs was modified by p-phenylendiamine and then it was used in preconcentration of Cu2+ ion prior to their determination by flame atomic absorption spectroscopy. The sorbent was characterised by Fourier transform infrared spectra, EDX, FE-SEM and VSM techniques. We investigated and optimised various parameters influencing the preconcentration efficiency, such as the media pH, adsorbent quantity, contact time, sample volume and elution conditions. Under optimum conditions, the analytical performance of the method was evaluated. The calibration curve was found to be linear from 10.0 to 150 μg L?1 (R2 = 0.996). Calculated limit of detection was 0.43 μg L?1 (n = 5). The estimated relative standard deviation was 2.50% (n = 5). Moreover, the maximum adsorption capacity of the sorbent was 51.5 mg g?1 and preconcentration factor was 125. Capability of developed method was proved by applying it for preconcentration of Cu2+ ion from food and water samples.  相似文献   

13.
In this work, magnetic solid-phase extraction based on sodium dodecyl sulfate-coated Fe3O4 nanoparticles has been successfully applied for extraction and preconcentration of trace amounts of nystatin from water and vaccine samples prior to high-performance liquid chromatography–ultraviolet detection. Various experimental parameters affecting extraction and recovery of the analyte, such as the amount of sodium dodecyl sulfate, pH of the sample solution, salt concentration, extraction time, sample volume and desorption conditions, were systematically studied and optimized. Under optimized conditions, nystatin was quantitatively extracted. Proper linear range with good coefficient of determination, (R 2 > 0.99) and limit of detection and quantification (based on signal-to-noise ratios of 3 and 10) of 2.0 and 5.0 µg L?1, over the investigated concentration range (5–700 µg L?1), were obtained, respectively. The intra-day and inter-day relative standard deviations at 50 µg L?1 level of NYS were 1.4 and 4.5% based on six replicate determinations. The accuracy of the method was evaluated by recovery measurements on spiked samples. Suitable recoveries of 96–102 and 26–44% were achieved (at spiked levels of 50, 300 and 500 µg L?1) for water and vaccine samples, respectively.  相似文献   

14.
This work assesses the use of modified natural clinoptilolite as an adsorptive material for separation and preconcentration of trace amounts of zirconium ions. A simple, rapid and economical method was developed for the preconcentration of trace amounts of zirconium in aqueous medium using 1-(2-pyridylazo)-2-naphthol as a complexing agent. Effect of sample pH, flow rate of sample and elution solutions, breakthrough volume and interference of several ions were studied. Determination of zirconium was made by ICP-AES technique. The sorption was quantitative in the pH range from 3.0 to 4.0, whereas quantitative desorption occurred instantaneously with 2 mol L?1 hydrochloric acid. Linearity was maintained between 0.05 and 9.0 μg mL?1. Relative standard deviations range from ±0.9% to ±2.3% (n?=?5). The detection limit was 0.1 ng mL?1. Because of good recovery (>97%), this method is suitable for preconcentration and determination of zirconium in effluents containing trace amount of zirconium.  相似文献   

15.
A sensitive and simple method has been established for simultaneous preconcentration of trace amounts of Pb (II) and Ni (II) ions in water samples prior to their determination by flame atomic absorption spectrometry. This method was based on the using of a micro-column filled with graphene oxide as an adsorbent. The influences of various analytical parameters such as solution pH, adsorbent amount, eluent type and volume, flow rates of sample and eluent, and matrix ions on the recoveries of the metal ions were investigated. Using the optimum conditions, the calibration graphs were linear in the range of 7–260 and 5–85 μg L?1 with detection limits (3Sb) of 2.1 and 1.4 μg L?1 for lead and nickel ions, respectively. The relative standard deviation for 10 replicate determinations of 50 μg L?1 of lead and nickel ions were 4.1% and 3.8%, respectively. The preconcentration factors were 102.5 and 95 for lead and nickel ions, respectively. The adsorption capacity of the adsorbent was also determined. The method was successfully applied to determine the trace amounts of Pb (II) and Ni (II) ions in real water samples. The validation of the method was also performed by the standard reference material.  相似文献   

16.
In the present work, a new SiO2/TiO2/Ce, nanoparticle was synthesed using sol-gel method and evaluated as an adsorbent for preconcentration trace amounts of Pd(II) ions. The characterization of the nanoparticles has been studied by transmission electron microscope and X-ray diffraction. The preconcentration method is based on palladium adsorption onto the surface of nanoparticle at pH 8.5. The main factors affecting Pd(II) adsorption, such as pH of sample solution, concentration and volume of eluent, sample volume, interfering of the coexisting ions and flow rate of sample and eluent were investigated and optimized. At optimum conditions, linearity was maintained between 4.0 to 1000.0 ng mL?1. Detection limit based on 3Sb/m was 2.3 ng mL?1. Seven replicate determinations of a solution containing of 12.5 µg palladium gave a relative standard deviation ±1.7%. According to the Langmuir linear model, the maximum adsorption capacity of palladium was found to be 34.5 mg g?1. Finally, the feasibility of the proposed method for Pd(II) determination was assessed by analysis of certified reference materials, anodic slime and wastewater samples and satisfactory results were obtained.   相似文献   

17.
A new, simple, fast and reliable solid-phase extraction method has been developed for separation/preconcentration of trace amounts of Pb(II) using dithizone/sodium dodecyl sulfate-immobilized on alumina-coated magnetite nanoparticles, and its determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after eluting with 4.0?mol?L?1 HNO3. Optimal experimental conditions including pH, sample volume, eluent concentration and volume, and co-existing ions have been studied and established. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation of Pb(II) using FAAS technique were 280 (for 560?mL of sample solution), 0.28?ng?mL?1, 1.4?C70?ng?mL?1 and 4.6% (for 10?ng?mL?1, n?=?10), respectively. These analytical parameters using GFAAS technique were 300 (for 600?mL of sample solution), 0.002?ng?mL?1, 0.006?C13.2?ng?mL?1 and 3.1% (for 5?ng?mL?1, n?=?10), respectively. The presented procedure was successfully applied for determination of Pb(II) content in opium, heroin, lipstick, plants and water samples.  相似文献   

18.
《Analytical letters》2012,45(9):1430-1441
A new column loaded with modified silica gel-chitosan is proposed as a preconcentration system for adsorption of trace cadmium (II) and copper (II). The optimization steps were performed under dynamic conditions, involving pH, sample flow rate, eluent selection, concentration, volume, and flow rate. Trace Cd(II) and Cu(II) were quantitatively adsorbed by the modified silica gel-chitosan. The metal ions adsorbed on the separation column were eluted with 0.1 M HNO3 and determined by flame atomic absorption spectrometry. Under the optimum conditions, this method allowed the determination of cadmium and copper with limits of detection (LOD) of 20 ng L?1 and 38 ng L?1, respectively. The relative standard deviation values (RSDs) for 1.0 mg L?1 of cadmium and 1.0 mg L?1 of copper were 2.62% and 2.85%, respectively.  相似文献   

19.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

20.
We report on a sensitive, reliable and relatively fast method for separation, preconcentration and determination of trace quantities of copper(II) ion. It is making use of nanometer-sized γ-alumina nanoparticles modified with sodium dodecyl sulfate (SDS). The adsorptive potential was assessed via a Langmuir isotherm and the maximal sorption capacity was found to be 138 mg g-1. The effects of pH values, amount of ligand, flow rate, type of eluting agent, volume of eluent, and the volume of sample were examined. The effects of interfering ions on the recovery of the analyte were also investigated. Copper ion was then determined by flame atomic absorption spectrometry. The relative standard deviation for five replicate determinations (at 50 μg L?1 of copper) is 3.3%. The detection limit (at 3 s) is 2.5 μg L?1. This method was validated with a certified reference material of oyster tissue (NIST SRM 1566b) and the results coincided well with the certified values. The procedure was successfully applied to the determination of Cu in water and food samples.
Figure
Alumina nanoparticles modified with SDS have been used as sorbent for separation and preconcentration of copper after complexation with APDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号