首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
《Analytical letters》2012,45(9):1571-1578
Abstract

The present paper describes the evaluation and application of internal standard for the determination of copper in fruit juices, employing Fast Sequential Flame Atomic Absorption Spectrometry (FS FAAS). The internal standards tested were indium, cobalt, and nickel using correlation graphs. However, indium was used, considering the composition of the samples. After this step, copper was determined in fruit juices using indium as internal standard. This method allows the determination of copper with a limit of quantification of 0.011 mg L?1. The fruit juice samples selected for analysis were of grape, orange, pineapple, peach, cashew, and strawberry. The contents of copper in these samples varied from 0.02 to 0.42 mg L?1. The analytical results were compared with the results obtained by analysis of these samples after complete mineralization using acid digestion and determination employing FS FAAS. The statistical comparison by a t-test (95% confidence level) showed no significant difference between the results. The relative standard deviations (RSD) with and without the use of the internal standard for a copper solution containing 0.4 mg L?1 were of 0.62 and 1.94%, respectively. The use of indium as internal standard provided more accurate analytical results, as well as better analytical performance for the determination of copper in juice samples.  相似文献   

2.
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-m thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10–9–10–8 mol L–1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.  相似文献   

3.
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 × 10−9 to 1.0 × 10−6 mol L−1 with detection limit of 2.0 × 10−9 mol L−1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 μmol L−1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step.  相似文献   

4.
A new approach for the determination of cobalt, copper, iron, nickel and zinc in cemented tungsten carbides with cobalt as a binder by flame atomic absorption spectrophotometry (FAAS) is reported. Real samples were dissolved in phosphoric, hydrochloric and nitric acid. PTFE bomb or alternatively small amounts of HF were used for the enhancement of the recovery of the elements investigated. Synthetic samples were used for interference studies. Multiple linear regression was applied for the control of matrix effects and it proved to be very effective in the search for interfering elements. Using simple acid based standards, all investigated elements could be determined sequentially in a complex matrix by using an appropriate method of calculation. The method described has been succesfully applied to real type commercial samples. Results were compared with those obtained by inductively coupled plasma atomic emission spectrometry (ICP-AES) and X-ray fluorescence spectrometry (XRF), being in good agreement with each other and having relative standard deviations better than 5%.  相似文献   

5.
A new simple and reliable method has been developed to separate and preconcentrate trace copper ion in drinking water and tea samples for subsequent measurement by flame atomic absorption spectrometry (FAAS). The copper ions are adsorbed quantitatively during passage of aqueous solutions through Amberlyst 36 cation exchange resin. After the separation and preconcentration stage, the analyte was eluted with a potassium cyanide solution and determined by FAAS. Different factors including pH of sample solution, sample volume, amount of resin, flow rate of aqueous solution, volume and concentration of eluent, and matrix effects for preconcentration were examined. The analytical figures of merit for the determination of copper are as follows: analytical detection limit (3 sigma), 0.26 microg/L; precision (RSD), 3.1% for 100 microg/L; enrichment factor, 200 (using 1000 mL of sample solution and 5 mL of eluent); time of analysis, 3.5 h (for obtaining enrichment factor of 200); capacity of resin, 125 mg/g. The method was applied for copper determination by FAAS in tap water, commercial natural spring water, commercial treated drinking water, and commercial tea bag sample. The accuracy of the method is confirmed by analyzing tea leaves (GBW 07605). The results demonstrated good agreement with the certified values.  相似文献   

6.
《Analytical letters》2012,45(3):489-501
ABSTRACT

By using the Pb-4-methylpiperidinedithiocarbamate complex (Pb(4-MPDC)2) on microcrystalline naphthalene in a column a method was developed for the preconcentration of copper in water samples prior to its determination by FAAS. In this method, copper in liquid phase quantitatively replaces lead on the Pb(4-MPDC)2-naphthalene solid phase in the column, forming solid Cu(4-MPDC)2 complex.

Afterwards, copper on Cu(4-MPDC)2-naphthalene can be easily eluted by potassium cyanide into the aqueous phase, and the Cu is measured by FAAS. The optimum experimental parameters such as pH, flow rate, sample volume, Pb(4-MPDC)2-naphthalene ratio, concentration of the potassium cyanide solution and effect of matrix ions for the preconcentration of copper were investigated. The obtained recovery was nearly 100 %, when the enrichment factor was 100 for standard solutions and spiked water samples. The proposed method has been employed for the determination of copper in various standard metal alloys and natural water samples.  相似文献   

7.
An alternative device for the direct solid analysis (DSA) for copper determination by flame atomic absorption spectrometry (FAAS) is proposed. Copper was directly determined in commercial medicinal plants used as dietary supplements. The determination of copper in solid samples by DSA–FAAS was made by using a conventional air–acetylene flame. Between 0.05 and 1.5 mg of each test, sample was weighed directly into a small polyethylene vial connected to the device used for solid introduction into the flame. Test samples were introduced into the flame as a dry aerosol using a T-quartz cell set between the burner and the optical path. The T-quartz cell has a slit in the superior part by which the solid aerosol passes to the flame. A transient signal, evaluated as integrated absorbance, is produced and it is totally integrated in 2 s. Background signals always presented absorbance values less than 0.1. It was found a characteristic mass of 0.8 ng Cu and absolute limit of detection of 1.2 ng (3 s), or 1.2 μg g−1 if a sample mass of 1 mg was used. Optimized conditions for air flow rate, flame stoichiometry, and so on were established as well. No excessive grinding of the samples was needed and samples with particle of size less than 80 μm were used throughout. No statistical difference between the results from the proposed system and those obtained by sample digestion and determination by conventional FAAS was observed. With the proposed procedure, more than 50 test samples can be analyzed in 1 h and it can be easily adapted to conventional spectrometers for FAAS.  相似文献   

8.
An organo-nanoclay is used as a new, easily accessible, and stable solid sorbent for the preconcentration of trace amounts of rhodium ions from aqueous solution, this followed by its determination by flame atomic absorption spectrometry (FAAS). Rh(III) ion was first complexed with 2,3,5,6-tetra(2-pyridyl) pyrazine (TPPZ) at pH values between 3.0 and 4.7, and then the complex was then adsorbed onto the nanoclay. The rhodium ions were eluted from the sorbent with HCl. The rhodium in the effluent was determined by FAAS. The linear analytical range is between 0.14 ng mL?1 and 20.0 μg mL?1 in the initial solution, the relative standard deviation at 2.0 μg mL?1 of rhodium is 2.6% (n?=?8), the detection limit is 0.03 ng mL?1, and the preconcentration factor is 140. Experimental parameters including the pH, eluent type, interference by other ions and breakthrough volume were optimized. The method was applied to the determination of rhodium in water, road dust and synthetic samples.  相似文献   

9.
Solid paraffin-based carbon paste electrodes modified with 2-aminothiazole organofunctionalized silica have been applied to the anodic stripping determination of copper ions in ethanol fuel samples without any sample treatment. The proposed method comprised four steps: (1) copper ions preconcentration at open circuit potential directly in the ethanol fuel sample; (2) exchange of the solution and immediate cathodic reduction of the absorbate at controlled potential; (3) differential pulse anodic stripping voltammetry; (4) electrochemical surface regeneration by applying a positive potential in acid media. Factors affecting the preconcentration, reduction and stripping steps were investigated and the optimum conditions were employed to develop the analytical procedure. Using a preconcentration time of 20 min and reduction time of 120 s at −0.3 V versus Ag/AgClsat a linear range from 7.5 × 10−8 to 2.5 × 10−6 mol L−1 with detection limit of 3.1 × 10−8 mol L−1 was obtained. Interference studies have shown a decrease in the interference effect according to the sequence: Ni > Zn > Cd > Pb > Fe. However, the interference effects of these ions have not forbidden the application of the proposed method. Recovery values between 98.8 and 102.3% were obtained for synthetic samples spiked with known amounts of Cu2+ and interfering metallic ions. The developed electrode was successfully applied to the determination of Cu2+ in commercial ethanol fuel samples. The results were compared to those obtained by flame atomic absorption spectroscopy by using the F-test and t-test. Neither F-value nor t-value have exceeded the critical values at 95% confidence level, confirming that there are no significant differences between the results obtained by both methods.  相似文献   

10.
A simple and reliable method has been developed for separation and preconcentration of trace amounts of copper ions in cereals food for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu^2+ ions are adsorbed selectively and quantitatively during the passage. The retained copper ions were desorbed from the potassium tetratitanate whisker with 10.0mL of 2mol/L sulphuric acid solutions as eluent and were determined by FAAS. The linear range was 0.05μg/mL-0.20μg/mL in the original solution with a correlation coefficient of 0.9998. The detection limit of the proposed method is 2. lng/mL in the original solution (3σ, n=9). Determination of copper in standard ions showed that the proposed method has good accuracy (recovery was more than 95%). The method was successfully applied for recovery and determination of copper in cereals food samples  相似文献   

11.
An on-line cadmium preconcentration and determination system implemented with flame atomic absorption spectrometry (FAAS) associated with flow injection was studied. Cadmium was retained as Cd-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol Cd-(5-Br-PADAP) complex, pH 9.3. The Cd complex was removed from the knotted reactor (KR) with ethanol. A total enhancement factor of 140 was obtained with respect to FAAS (40 for KR and 3.5 due to the use of ethanol) with preconcentration time of 120 s. The detection limit value for preconcentration of 1 g sample was 0.5 ng/g. The repeatability for 10 replicate determinations at 5.0 ng/g Cd level was 3.5% relative standard deviation, calculated from peak heights obtained. The calibration graph using the preconcentration system for Cd was linear with a correlation coefficient of 0.9990 at levels near the detection limits to at least 2000 ng/g. The method was successfully applied to determination of total Cd in honey samples.  相似文献   

12.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

13.
FAAS法连续分析测试电池锌粉中镁铁铜铅锰   总被引:1,自引:0,他引:1  
提出了运用FAAS法连续分析测试电池锌粉中Mg、Fe、Cu、Pb、Mn的含量,给出了Mg、Fe、Cu、Pb、Mn最佳测定条件及线性范围,在测定中对样品中的干扰因素进行了综合考虑.方法具有很好的灵敏度和重现性,步骤简单、操作容易、干扰少.测定样品Mg、Fe、Cu、Pb、Mn含量的相对标准偏差均小于1.0%(n=10).标准加入回收率均在97.0%-101.5%(n=6)范围内.适用于电池锌粉中Mg、Fe、Cu、Pb、Mn的含量控制分析和样品系统分析.  相似文献   

14.
A flow-injection system was developed in which alloy metal samples are electrolytically dissolved and the dissolved samples are analysed by flame atomic absorption spectrometry (FAAS). The effects of electrolyte composition and electrolysis parameters on the dissolution of the sample were studied. The method was used for the determination of copper in aluminium alloys. Electrolyte solutions consisting of 0.2–1.0 M nitric acid are better than other electrolytes tested with regard to both alloy sample dissolution and determination of copper by FAAS. The peak height increases linearly with the electrolysis time or current within a certain range. The detection limit depends on the sensitivity of the detector used, and can be improved by increasing the electrolysis time or current. Generally, aluminium alloys containing 0.5–10% copper can give suitable signals for FAAS determination. The reproducibility of electrolysis and determination is about 4% for the same sampling points and 5% for different sampling points on the alloy sample.  相似文献   

15.
A disposable screen‐printed device containing working, auxiliary, and reference electrodes is proposed for the simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel. The working electrode was printed using an ink modified with 2‐benzothiazole‐2‐thiol organofunctionalized SBA‐15 silica, in order to increase sensitivity. The performance of this electrode was compared with that of bare and SBA‐15‐modified electrodes. After optimizing the experimental parameters, the device was applied in determination of the analytes in commercial ethanol fuel samples, using 0.10 mol L?1 KCl/ethanol ratios of 30 : 70 (v/v), with [H+]=10?5 mol L?1. After 5 min of preconcentration at ? 1.3 V (vs. pseudo‐Ag/AgCl), four well‐resolved signals were obtained, enabling simultaneous determination of the four analytes using a differential pulse anodic stripping voltammetry (DPASV) procedure. The limits of detection were 0.30, 0.065, 0.030, and 0.046 µmol L?1 for Zn(II), Pb(II), Cu(II), and Hg(II), respectively. The results of these analyses were in agreement with those obtained using graphite furnace atomic absorption spectroscopy (GFAAS) for Pb(II), Cu(II), and Hg(II), and high‐resolution continuum source flame atomic absorption spectrometry (HR‐CS‐FAAS) for Zn2+, at a 95 % confidence level. Analytes originally present in the samples could be detected, and the interference of some cations and anions was evaluated.  相似文献   

16.
The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, ‘layer on layer’ internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.  相似文献   

17.
《Analytical letters》2012,45(10):1991-2004
ABSTRACT

A method was developed for the preconcentration of copper, nickel and cadmium in water samples, prior to their determination by FAAS, using the Zn-piperazinedithiocarbamate complex (ZnPDC) loaded on activated carbon. In this method, Cu, Ni and Cd in liquid phase quantitatively replaced zinc on a ZnPDC-activated carbon solid phase. Afterwards, the metals on the solid phase were easily eluted by Hg (II) solution into aqueous phase, and were measured by FAAS. The optimum experimental parameters such as pH, sample volume, and effect of matrix ions for the preconcentration of the metals were investigated. The range of linearity 0-6, 0-5, 0-3 μgml?1, correlation coefficient 0.998, 0.996, 0.999, detection limits 15.7, 23.5, 11.8 ngml?1 and determination limits 136, 179, 98 ngml?1 in final Hg(II) solution were obtained for Cu, Ni and Cd, respectively. The proposed method has been employed for the determination of Cu, Ni and Cd in various standard metal alloys and natural water samples.  相似文献   

18.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

19.
Microwave assisted pre-treatments for atomic spectrometric determination (inductive coupled plasma-optical emission spectrometry, ICP-OES or flame atomic absorption spectrometry, FAAS) of metallic elements, usually present in antidandruff shampoos, are proposed. They are based on the digestion of the sample with HNO3 into a closed reactor, which is irradiated at 800 W for a few minutes. Selenium was determined by ICP-OES. The limit of detection was 0.11 mg l−1; the relative standard deviation (R.S.D.) for the selenium content in the samples was in the 0.6–3.6% range. The results obtained were in agreement with the label contents and the recovery of the proposed method was in the 100–106% range. Zinc and cadmium were determined by FAAS. The limit of detection for zinc determination was 0.078 mg l−1; the R.S.D. for zinc contents was in the 0.8–8.6% range. A limit of detection of 0.09 mg l−1 was obtained for cadmium determination; the R.S.D. for cadmium contents was in the 0.7–2.7% range. The determinations were performed after two different sample mineralization pre-treatments — dry ashing (in an electric furnace) and wet mineralization (in a microwave oven). Both methodologies provided comparable results for zinc and cadmium determination in shampoos. The proposed microwave assisted digestion procedures allow a precise and accurate determination of selenium, zinc and cadmium in commercial antidandruff shampoos, and the sample pre-treatment is less time-consuming than the classic methods.  相似文献   

20.
Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10–5000 μmol L?1 with detection and quantification limits of 1.7 (S/N?=?3) and 5.9 (S/N?=?10) μmol L?1, respectively. The repeatability of the method was evaluated using a 500 μmol L?1 hydrogen peroxide solution, the value obtained being 1.6% (n?=?14). A sampling rate of 112 samples h?1 was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号