首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and reliable method has been developed for the rapid analysis of trace levels of malachite green from water samples using dispersive liquid–liquid microextraction and high-performance liquid chromatography-diode array detection. Factors relevant to the microextraction efficiency, such as the type and volume of extraction solvent, nature and volume of the disperser solvent, the effect of salt, sample solution temperature and the extraction time were investigated and optimised. Under the optimal conditions the linear dynamic range of malachite green was from 0.2 to 100.0?µg?L?1 with a correlation coefficient of 0.9962. The detection limit and limit of quantification were 0.1?µg?L?1 and 0.3?µg?L?1, respectively. The relative standard deviation (RSD) was less than 2.6% (n?=?5) and the recoveries of malachite green (5.0?µg?L?1) from water samples were in the range of 99.2?±?1.7%. Finally the proposed method was successfully applied for the analysis of malachite green from fish farming water samples.  相似文献   

2.
The objective of the present study was to develop and validate a rapid, highly sensitive, and reliable extraction method to determine acrylamide in water samples. The method was based on the derivatisation of the acrylamide in the presence of KBr, HBr and saturated Br2 solution into 2,3-dibromopropionamide and dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–electron capture detection (GC–ECD) of the analyte. Different parameters that affect the DLLME process such as types and volumes of disperser solvent, ionic strength of aqueous solution and extraction time were investigated and optimised. Under optimal conditions, excellent linearity was obtained between concentration of acrylamide and the response of ECD with correlation of determination (R2) of 0.9999. The precision of the method, which was determined by calculating the relative standard deviations (RSD) of the at least three replicate measurements, was 3.6%. The method presented in this study is sensitive enough for the determination of acrylamide in different water samples with the limit of detection (LOD) value of 1?ng?L?1. The mean percentage recoveries exceeded 91% for all of spiking levels in the real water samples. The results obtained from DLLME method are validated by EPA method 8032A.  相似文献   

3.
4.
A novel and environmentally friendly microextraction method, termed ionic liquid dispersive liquid-phase microextraction (IL-DLPME), has been developed for rapid enrichment of triclosan and triclocarban before analysis by high-performance liquid phase chromatography–electrospray tandem mass spectrometry (HPLC–ESI-MS–MS). Instead of using toxic organic solvents, an ionic liquid was used as a green extraction solvent. This also avoided the instability of the suspending drop in single-drop liquid-phase microextraction, and the heating and cooling step in temperature-controlled ionic liquid dispersive liquid phase microextraction. Factors that may affect the enrichment efficiency, for example volume of ionic liquid, type and volume of dispersive solvent, pH, extraction time, and NaCl content were investigated in detail and optimized. Under optimum conditions, linearity of the method was observed over the range 0.2–12 μg L−1 for triclocarban and 1–60 μg L−1 for triclosan with correlation coefficients ranging from 0.9980 to 0.9990, respectively. The sensitivity of the proposed method was found to be excellent, with limits of detection in the range 0.040–0.58 μg L−1 and precision in the range 7.0–8.8% (RSD, n = 5). This method has been successfully used to analyze real environmental water samples and satisfactory results were achieved. Average recoveries of spiked compounds were in the range 70.0–103.5%. All these results indicated that the developed method would be a green method for rapid determination of triclosan and triclocarban at trace levels in environmental water samples.  相似文献   

5.
6.
In this study we on-line coupled hollow fiber liquid–liquid–liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes – 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) – were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces – the donor phase – SLM and the SLM – acceptor phase – under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r2 ≥ 0.998), sensitivity (limits of detection: 0.03–0.05 μg L−1), and precision (RSD% ≤ 4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min.  相似文献   

7.
Dichlorodiphenyltrichloroethane,1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its main metabolites have been paid much more attention, and present paper describes a new process for the rapid determination of such pollutants in environmental water samples based on dispersive liquid–liquid microextraction (DLLME) and high performance liquid chromatography with ultraviolet detector, which has merits such as high enrichment factor and sensitivity, low cost and easy to operate. Significant parameters such as extraction solvent and dispersive solvent type and volume, pH, extraction time and centrifuging time, which would have important impact on the enrichment of target pollutants, have been investigated in detail. The results exhibited that excellent performance could be achieved with carbon tetrachloride and acetonitrile as the extraction solvent and dispersive solvent, respectively. Under the optimal conditions, excellent linear relationship was gained in the range of 1.0–50 μg L−1, and detection limits were in the range of 0.32–0.51 μg L−1. The precisions of the proposed method were in the range of 2.80–7.50% (RSD). The proposed method was validated with real water samples, and the results indicated the spiked recoveries were in the range of 85.58–119.6% and the established method was very good and competitive in the determination of DDT and its metabolites.  相似文献   

8.
A sensitive, simple, and rapid method is developed for ion-pair-based surfactant-assisted dispersive liquid–liquid microextraction (IPSA-DLLME) and flame atomic absorption spectrometric determination of cadmium in water samples. In this procedure, trace amounts of Cd2+ were converted to CdI 4 2– , and after addition of a tetrabutylammonium bromide (TBAB) solution as cationic surfactant the analyte was transformed to the ion-pair state. This cadmium species was extracted by fast injection of a solution containing 200 μL of chloroform and 800 μL of methanol as extraction and disperser solvents, respectively. The pH of the sample solution, concentration of iodide, TBAB amount, and the extractant volume were optimized using a 27-run Box–Behnken design with a triplicate central point. Under the optimized conditions, the calibration curve was linear in the range 1–200 μg L–1 (R 2 = 0.9959); with the detection limit (signal/noise = 3) of 0.28 μg L–1. The relative standard deviations (RSD) for eight runs (Cd2+ = 10 μg L–1) and enrichment factor were found to be 3.04 % and 50, respectively.  相似文献   

9.
A novel method for preconcentration is described for chromium speciation at microgram per liter to sub-microgram per liter levels. It is based on selective complex formation of both Cr(VI) and Cr(III) followed by dispersive liquid–liquid microextraction and determination by microsample introduction-flame atomic absorption spectrometry. Effects influencing complex formation and extraction (such as pH, temperature, time, solvent, salinity and the amount of chelating agent) have been optimized. Enrichment factors up to 275 and 262 were obtained for Cr(VI) and total Cr, respectively. The calibration graph is linear from 0.3 to 20 µg L?1, and detection limits are 0.07 and 0.08 µg L?1 for Cr(VI) and total Cr, respectively. Relative standard deviations (RSDs) were obtained to be 2.0% for Cr(VI) and 2.6% for total Cr (n?=?7).  相似文献   

10.
A simple solvent microextraction method termed vortex-assisted liquid–liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-μECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 μL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835–1115 and limits of detection below 0.010 μg L−1 were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r2) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 μg L−1. Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72–106.3% were obtained.  相似文献   

11.
This paper describes a novel, simple and environmentally friendly method for rapid determination of the amide herbicides metoalchlor, acetochlor, and butachlor. It is based on dispersive liquid-liquid microextraction and gas chromatography–mass spectrometry. Factors that may influence the enrichment efficiency, such as type and volume of extraction solvent, type and volume of dispersive solvent, extraction time, and content of NaCl, were investigated and optimized in detail. Under the optimum conditions, the limits of detection of metoalchlor, acetochlor, and butachlor were 0.02, 0.04, and 0.003 μg L−1, respectively. The experimental results indicated that there was linearity over the range 0.1–50 μg L−1 and good reproducibility with relative standard deviations over the range 1.6–3.0% (n = 5). The proposed method has been applied for the analysis of real-world water samples, and satisfactory results were achieved. Average recoveries of spiked herbicides were in the range 80.3–108.8%. All of these indicated that the developed method would be an efficient method for simultaneous determination of the three herbicides in environmental water samples.  相似文献   

12.
Dissolved carbon dioxide flotation-assisted in-syringe dispersive liquid–liquid microextraction (DCF-IS-DLLME) followed by microsampling flame atomic absorption spectrometry was developed as a simple, inexpensive and fast method for extraction and determination of Pd(II). In the proposed approach, N,N′-bis (naphthylideneimino) diethylenetriamine (NAPdien) was utilized as a selective complexing reagent for Pd(II) ion. Several influential factors on the extraction efficiency including types and volumes of extraction and disperser solvents, pH of the sample solution, concentration of NAPdien and interfering ions were studied. By applying the optimal conditions, a preconcentration factor of 28.7 and limit of detection of 2.5 ng mL?1 were provided by the proposed method. Linearity was in the range of 10–400 ng mL?1 with a correlation coefficient (R 2) of 0.9968. Intra-day RSD% values for five repetitive measurements of the spiked solutions at the concentrations of 20 and 100 ng mL?1 were 5.2 and 2.4%, respectively, whereas it was obtained within the range of 3.6–18.6% for the real samples. Inter-day RSD% values of the spiked solutions were found to be 9.6 and 8.7%, respectively. The results demonstrated that except for Fe2+ and Fe3+, no remarkable interfering effect was created by the other studied ions for determination of Pd(II) so that the tolerance limits (W Ion/W Pd(II)) of the major cations and anions were in the range of 1000–10,000. Finally, DCF-IS-DLLME was successfully applied for determination of Pd(II) in different water samples and the obtained relative recoveries in the range of 94.5–105% illustrated favorable accuracies for the proposed method.  相似文献   

13.
A rapid and sensitive method has been developed for the determination of biphenyl and biphenyl oxide in water samples using dispersive liquid–liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (8.0?µL tetrachloroethylene) and disperser solvent (1.0?mL acetonitrile) for the formation of cloudy solution in 5.0?mL aqueous sample containing biphenyl and biphenyl oxide. After extraction, phase separation was performed by centrifugation and biphenyl and biphenyl oxide in sedimented phase (5.0?±?0.3?µL) were determined by gas chromatography-flame ionisation (GC-FID) system. Type of extraction and disperser solvents and their volumes, salt effect on the extraction recovery of biphenyl and biphenyl oxide from aqueous solution have been investigated. Under the optimum conditions and without salt addition, the enrichment factors for biphenyl and biphenyl oxide were 819 and 785, while the extraction recovery were 81.9% and 78.5%, respectively. The linear range was (0.125–100?µg L?1) and limit of detection was (0.015?µg?L?1) for both analytes. The relative standard deviation (RSD, n?=?4) for 5.0?µg?L?1 of analytes were 8.4% and 6.7% for biphenyl and biphenyl oxide, respectively. The relative recoveries of biphenyl and biphenyl oxide from sea, river water and refined water (Paksan company) samples at spiking level of 5.0?µg?L?1 were between 85.0% and 100 %.  相似文献   

14.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

15.
A new micro-extraction technique named low-density magnetofluid dispersive liquid–liquid microextraction (LMF-DMMLE) has been developed, which permits a wider range of solvents and can be combined with various detection methods. Comparing with the existing low density solvents micro-extraction methods, no special devices and complicated operations were required during the whole extraction process. Dispersion of the low-density magnetofluid into the aqueous sample is achieved by using vortex mixing, so disperser solvent was unnecessary. The extraction solvent was collected conveniently with an external magnetic field placed outside the extraction container after dispersing. Then, the magnetic nanoparticles were easily removed by adding precipitation reagent under the magnetic field. In order to evaluate the validity of this method, ten organochlorine pesticides (OCPs) were chosen as the analytes. Parameters influencing the extraction efficiency such as extraction solvents, volume of extraction solvents, extraction time, and ionic strength were investigated and optimized. Under the optimized conditions, this method showed high extraction efficiency with low limits of detection of 1.8–8.4 ng L−1, good linearity in the range of 0.05–10.00 μg L−1 and the precisions were in the range of 1.3–9.6% (RSD, n = 5). Finally, this method was successfully applied in the determination of OCPs in real water samples.  相似文献   

16.
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3.  相似文献   

17.
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L?1 and 9 μg L?1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L?1), and coefficients of variation of 7 % and 5 % (n?=?5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Figure
?  相似文献   

18.
A simple ultrasound-assisted dispersive liquid–liquid microextraction method combined with liquid chromatography was developed for the preconcentration and determination of six pyrethroids in river water samples. The procedure was based on a ternary solvent system to formatting tiny droplets of extractant in sample solution by dissolving appropriate amounts of water-immiscible extractant (tetrachloromethane) in watermiscible dispersive solvent (acetone). Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvent, extraction time, ultrasonic time, and centrifuging time) were evaluated. Under the optimum condition, good linearity was obtained in a range of 0.00059–1.52 mg L−1 for all analytes with the correlation coefficient (r2) > 0.999. Intra-assay and inter-assay precision evaluated as the relative standard deviation (RSD) were less than 3.4 and 8.9%. The recoveries of six pyrethroids at three spiked levels were in the range of 86.2–109.3% with RSD of less than 8.7%. The enrichment factors for the six pyrethroids were ranged from 767 to 1033 folds.  相似文献   

19.
In this work, we propose solvent-based de-emulsification dispersive liquid–liquid microextraction (SD-DLLME) as a simple, rapid and efficient sample pretreatment technique for the extraction and preconcentration of organochlorine pesticides (OCPs) from environmental water samples. Separation and analysis of fifteen OCPs was carried out by gas chromatography–mass spectrometry (GC/MS). Parameters affecting the extraction efficiency were systematically investigated. The detection limits were in the range of 2–50 ng L−1 using selective ion monitoring (SIM). The precision of the proposed method, expressed as relative standard deviation, varied between 3.5 and 10.2% (n = 5). Results from the analysis of spiked environmental water samples at the low-ppb level met the acceptance criteria set by the EPA.  相似文献   

20.
A new separation procedure for determination of palladium using dispersive liquid–liquid microextraction with dicyclohexano-18-crown-6 as complexing reagent was developed. In this method, potassium–dicyclohexano-18-crown-6 was used as a hydrophobic complex for the microextraction of palladium as PdCl4 2? complex ion. The main factors affecting DLLME efficiency, such as type and volume of extractant and disperser solvent, concentration of chelating reagent, concentration of KCl and pH were optimized. Under the optimal conditions, the limit of detection for palladium was 16.0 ng mL?1 with enrichment factor of 138. The present method was applied to the determination of palladium in water samples with satisfactory analytical results. The method was simple, rapid, cost efficient and sensitive for the extraction and preconcentration of palladium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号