首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A yield condition is obtained for circular cylindrical shells made of a definite class of fiber-reinforced composite material whose components possess plastic properties. It is shown that, in the plane of generalized stresses — the axial bending moment and the circumferential force (when the axial force is absent) — the yield curve consists of two linear and four curvilinear sections. By approximating the curvilinear sections, we get a piecewise linear yield condition described by a hexagon in the plane indicated. The nonlinear equations and the corresponding piecewise linear equations of the yield condition for particular cases are given in the form of tables. In solving specific boundary-value problems, we consider a circular cylindrical shell simply supported at its ends and loaded with a uniform internal pressure, for which the load-carrying capacity is determined in relation to the mechanical properties of composite components and some characteristic geometrical parameters. The results of numerical calculations are represented in the form of graphs. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 5, pp. 655–666, September–October, 2006.  相似文献   

2.
This article introduces a class of central composite designs with nested sub-experiment, which allow for the estimation of both response surface effects (fixed effects of crossed factors) and variance components arising from nested random effects. An iterated least squared method using sufficient statistics is given for obtaining maximum likelihood estimates of the parameters in a mixed model. Simulation results show that advantages for unbalanced designs are greatest when error variance is small.  相似文献   

3.
Fiber reinforced elastomeric matrix composites (EMCs) offer several potential advantages for construction of rotors for flywheel energy storage systems. One potential advantage, for safety considerations, is the existence of maximum stresses near the outside radius of thick circumferentially wound EMC disks, which could lead to a desirable self-arresting failure mode at ultimate speeds. Certain unidirectionally reinforced EMCs, however, have been noted to creep readily under the influence of stress transverse to the fibers. In this paper, stress redistribution in a spinning thick disk made of a circumferentially filament wound EMC material on a small rigid hub has been analyzed with the assumption of total radial stress relaxation due to radial creep. It is shown that, following complete relaxation, the circumferential strains and stresses are maximized at the outside radius of the disk. Importantly, the radial tensile strains are three times greater than the circumferential strains at any given radius. Therefore, a unidirectional EMC material system that can safely endure transverse tensile creep strains of at least three times the elastic longitudinal strain capacity of the same material is likely to maintain the theoretically safe failure mode despite complete radial stress relaxation. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 1, pp. 87–94, January–February, 2000.  相似文献   

4.
The stress distribution in a rectangular plate of a multilayer composite material with a periodically curved structure under forced vibration is studied. It is assumed that the plate is hinge supported at opposite sides. The investigation is carried out within the exact three-dimensional linear theory of elasticity. The mechanical relationships of the plate material are described by the continuum theory of Akbarov and Guz'. The numerical results obtained by the finite element method show that even in low-frequency dynamic loading of the plate the extreme values of stresses, which appear as a result of the curving in the plate structure, considerably exceed those in the corresponding static loading.Institute of Mathematics and Mechanics, Academy of Sciences of Azerbaijan, Baku, Azerbaijan. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 4, pp. 447–454, July–August, 1999.  相似文献   

5.
The study deals with experimental investigations into the fire hazard of a composite of density 150–350 kg/m3 made of aerated concrete and crushed expanded polystyrene waste. The results of fire tests showed that a single-flame source of low heat output (0.07 kW) did not influence the origination and spread of flame on the surface of test specimens, regardless their density. Upon exposing the specimens to a single burning item of moderate heat output (30.0 kW), during the first 600 s of exposure, neither flaming particles nor droplets originated, nor a lateral flame spread on the long specimen wing was observed. In the case of high heat output (112 kW), the specimens of densities 150 and 250 kg/m3 started to burn, but those of density 150 kg/m3, in addition, lost their integrity. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 255–264, March–April, 2008.  相似文献   

6.
The dynamic behavior of geared rotor system with defects is helpful for the failure diagnosis and state detecting of the system. Extensive efforts have been devoted to study the dynamic behaviors of geared systems with tooth root cracks. When surface cracks (especially for slant cracks) appear on the transmission shaft, the dynamic characteristics of the system have not gained sufficient attentions. Due to the parametric excitations induced by slant crack breathing and time-varying mesh stiffness, the steady-state response of the cracked geared rotor system differs distinctly from that of the uncracked system. Thus, utilizing the direct spectral method (DSM), the forced response spectra of a geared rotor system with slant cracked shaft and time-varying mesh stiffness under transmission error, unbalance force and torsional excitations are, respectively, obtained and discussed in detail. The effects of crack types (straight or slant crack) and crack depth on the forced response spectra of the system without and with torsional excitation are considered in the analysis. In addition, how the frequency response characteristics change after considering the crack is also investigated. It is shown that the torsional excitations have significant influence on the forced response spectra of slant cracked system. Sub-critical resonances are also found in the frequency response curves. The results could be used for shaft crack detection in geared rotor system.  相似文献   

7.
The possibility of using the finite-element method for investigating two-dimensional problems on natural vibrations in the mechanics of composite materials with curved structures is considered. With the example of a hinge-supported strip made of a composite material with a locally curved structure, the influence of geometrical and mechanical parameters of the strip on its eigenfrequencies is examined. It is established that the presence of local curving in the structure of strip material decreases the magnitude of eigenfrequencies.Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 1, pp. 71–78, January–February, 2005.  相似文献   

8.
Stress state of a composite shell with a sizable opening   总被引:1,自引:0,他引:1  
The stress-strain state of a nonshallow cylindrical shell of a composite material is investigated. The shell is weakened by a circular hole and loaded with internal pressure. For solving the problem, the variational-difference method is used. The calculations are carried out for an orthotropic shell with a sizable hole, with account of the reduced shear stiffness of the material.Translated from Mekhanika Kompozitnykh Materialov, Vol. 41, No. 1, pp. 49–56, January–February, 2005.  相似文献   

9.
This paper presents an alternative alpha finite element method using triangular meshes (AαFEM) for static, free vibration and buckling analyses of laminated composite plates. In the AαFEM, an assumed strain field is carefully constructed by combining compatible strains and additional strains with an adjustable parameter α which can produce an effectively softer stiffness formulation compared to the linear triangular element. The stiffness matrices are obtained based on the strain smoothing technique over the smoothing domains and the constant strains on triangular sub-domains associated with the nodes of the elements. The discrete shear gap (DSG) method is incorporated into the AαFEM to eliminate transverse shear locking and an improved triangular element termed as AαDSG3 is proposed. Several numerical examples are then given to demonstrate the effectiveness of the AαDSG3.  相似文献   

10.
In this paper, we present a new class of pseudo-global optimization procedures for solving formidable optimization problems in which the objective and/or constraints might be analytically complex and expensive to evaluate, or available only as black-box functions. The proposed approach employs a sequence of polynomial programming approximations that are constructed using the Response Surface Methodology (RSM), and embeds these within a branch-and-bound framework in concert with a suitable global optimization technique. The lower bounds constructed in this process might only be heuristic in nature, and hence, this is called a pseudo-global optimization approach. We develop two such procedures, each employing two alternative branching techniques, and apply these methods to the problem of designing containerships. The model involves five design variables given by the design draft, the depth at side, the speed, the overall length, and the maximum beam. The constraints imposed enforce the balance between the weight and the displacement, a required acceptable length to depth ratio, a restriction on the metacentric height to ensure that the design satisfies the Coast Guard wind heel criterion, a minimum freeboard level as governed by the code of federal regulations (46 CFR 42), and a lower bound on the rolling period to ensure sea-worthiness. The objective function seeks to minimize the required freight rate that is induced by the design in order to recover capital and operating costs, expressed in dollars per metric ton per nautical mile. The model formulation also accommodates various practical issues in improving the representation of the foregoing considerations, and turns out to be highly nonlinear and nonconvex. A practical test case is solved using the proposed methodology, and the results obtained are compared with those derived using a contemporary commercialized design optimization tool. The prescribed solution yields an improved design that translates to an estimated increase in profits of about $18.45 million, and an estimated 27% increase in the return on investment, over the life of the ship.  相似文献   

11.
We present an analytic and numerical analysis of several properties of a composite material with stiff imperfect interface conditions. Spaces of functions are identified wherewe can guarantee existence and uniqueness of solutions. In particular, formulas for the temperature distribution and flux are exhibited. Numerical calculations of the material characteristics such as temperature, flux and the effective conductivity are also performed and interpreted. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a novel finite element formulation for static, free vibration and buckling analyses of laminated composite plates. The idea relies on a combination of node-based smoothing discrete shear gap method with the higher-order shear deformation plate theory (HSDT) to give a so-called NS-DSG3 element. The higher-order shear deformation plate theory (HSDT) is introduced in the present method to remove the shear correction factors and improve the accuracy of transverse shear stresses. The formulation uses only linear approximations and its implementation into finite element programs is quite simple and efficient. The numerical examples demonstrated that the present element is free of shear locking and shows high reliability and accuracy compared to other published solutions in the literature.  相似文献   

13.
The long-term failure of a layered viscoelastic composite caused by precritical propagation of a coin-shaped crack is studied. It is assumed that the crack is located inside a viscoelastic layer (the layer of binder) parallel to the layer orientation. The crack development due to stretching of the composite massive by uniformly distributed external forces increasing with time is described. It is assumed that these forces act perpendicularly to the plane of crack propagation. The investigation is carried out within the framework of Boltzmann-Volterra linear theory for resolving integral operators with difference kernels describing the deformation of a material with time-dependent rheological properties. An irrational function of the viscoelastic integral operator is presented in the form of a proper continued fraction and transformed using the method of operator continued fractions. Numerical solutions are obtained for resolving integral operators with the kernel in the form of Rabotnov exponential-fractional function. The kinetics of crack growth with a prefailure zone commensurable with the crack length is described. A comparison with the results obtained in terms of the concept of thin structure of the crak tip is given.Timoshenko Institute of Mechanics, Ukrainian National Academy of Sciences, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 545–558, July–August, 2000.  相似文献   

14.
Natural and forced vibrations of a thick rectangular plate fabricated from a composite material with a spatially locally curved structure are investigated with the use of exact three-dimensional equations of motion of the theory of elastic anisotropic bodies. The investigations are carried out within the framework of the continuum approach developed by Akbarov and Guz. It is supposed that the plate is clamped at all its edges and is loaded on the upper face with uniformly distributed normal forces periodically changing with time. The influence of the parameters of local curving on the fundamental frequency of the plate and on the distribution of the normal stress acting in the thickness direction under forced vibration is studied. The corresponding boundary-value problems are solved numerically by employing the three-dimensional FEM modelling.Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 40, No. 6, pp. 779–790, November–December, 2004.  相似文献   

15.
The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed. Russian translation publeshed in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 729–738, November–December, 2006.  相似文献   

16.
In this article we intend to find the optimal shape of a nozzle respecting to some given target flow fields including viscosity effect. Via an approach based on measure theory which is not an iterative method and need not to any initial guess, each shape optimization problems are solved and consequently each geometry of the nozzle corresponding to prescribed flow fields is determined. Analyzing several case studies make us to confident on the use of the presented approach, because the obtained results give entirely the same as what we expect physically.  相似文献   

17.
The finite element dynamic response of an unsymmetric composite laminated orthotropic beam, subjected to moving loads, has been studied. One-dimensional finite element based on classical lamination theory, first-order shear deformation theory, and higher-order shear deformation theory having 16, 20 and 24 degrees of freedom, respectively, are developed to study the effects of extension, bending, and transverse shear deformation. The theories also account for the Poisson effect, thus, the lateral strains and curvatures can be expressed in terms of the axial and transverse strains and curvatures and the characteristic couplings (bend–stretch, shear–stretch and bend–twist couplings) are not lost. The dynamic response of symmetric cross-ply and unsymmetric angle-ply laminated beams under the action of a moving load have been compared to the results of an isotropic simple beam. The formulation also has been applied to the static and free vibration analysis.  相似文献   

18.
The problem is solved of designing a symmetric airfoil with upstream blowing opposite to subsonic irrotational steady flow of an inviscid incompressible fluid. The solution relies on Sedov’s idea of a stagnation region developing in the neighborhood of the stagnation point. An iterative solution process is developed, and examples of airfoils are constructed. The numerical results are analyzed, and conclusions are drawn about the effect of blowing parameters on the airfoil geometry and the resultant force acting on the airfoil.  相似文献   

19.
In this paper, design and simulation of a carbon nanotube-based nano-electromechanical shock switch is reported. The switch is represented by a carbon nanotube placed over a ground electrode. Response of the nano-switch based on nonlinear beam theory is studied using Galerkin’s method. Up to five mode shapes have been utilized to capture the response of system and results are validated by comparing with Molecular Dynamics (MD) simulation. Due to their high stiffness, CNTs cannot be actuated to pull-in (switch ON) state by conventional mechanical shocks in range of 10–1000 g under one-step voltage. Here, a multi-steps voltage modification is applied to enhance the actuation. Employing this method, a nano-switch with fixed geometry can be adjusted to be triggered by wide rang of mechanical shocks (10–1000 g).  相似文献   

20.
The influence of initial tension or compression along cracks on the stress intensity factor (SIF) at crack tips under the action of additional normal forces on crack edges is studied for infinite bodies. A strip made of a composite material is considered. The strip ends are simply supported, and the strip contains a crack whose edges are parallel to its face planes. The strip is first stretched or compressed along crack edges, and then additional uniformly distributed normal forces are applied to the crack edges. The influence of the initial tension (compression) on the SIF caused by the additional normal forces is studied. The corresponding boundary-value problems are modelled with the use of the three-dimensional linearized theory of elasticity. All the investigations are carried out numerically by employing the finite-element method. The values of SIF are calculated by the energy release method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号