首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
气流扬声器全调制发声方法研究   总被引:1,自引:0,他引:1  
杨亦春  滕鹏晓 《声学学报》2010,35(2):192-199
发展了一种耗气量小和背景噪声低的气流声源新调制模型。建立了全调制气流声源模型,零流量被设置为气流扬声器的静态,音频调制信号经过了去下包络预处理。控制通气量与调制信号成正比,降低气流消耗和减小背景噪声,与四类主要气流扬声器调制方式的效率进行了对比。与半通气调制方法相比较,全调制方法对典型语言广播的气流利用率从5%提高到51.5%,播放正弦波的气流利用率始终保持最大值60%,并使播放声音的信噪比提高15 dB以上。  相似文献   

3.
We show that parametric amplification at low-frequency pumping can be implemented in aperiodic nonlinear photonic crystals. In this process, the intensities of the waves with frequencies higher than the pumping frequency increase with increase in the interaction length as in the case of the standard process of parametric amplification at high-frequency pumping. The process under consideration includes a nondegenerate parametric down-conversion followed by two parametric up-conversions in the same pumping wave. As a result, generation at four new frequencies arises. Quantum analysis of the process demonstrates the presence of entanglement in the states of four modes. Talk presented at the oral issue of J. Russ. Laser Res. dedicated to the memory of Professor Vladimir A. Isakov, Professor Alexander S. Shumovsky, and Professor Andrei V. Vinogradov held in Moscow February 21–22, 2008.  相似文献   

4.
A further development of a previously proposed approach to calculating the sound field in an arbitrarily irregular ocean is presented. The approach is based on solving the first-order causal mode equations, which are equivalent to the boundary-value problem for acoustic wave equations in terms of the cross-section method. For the mode functions depending on the horizontal coordinate, additional terms are introduced in the cross-section equations to allow for the multilayer structure of the medium. A numerical solution to the causal equations is sought using the fundamental matrix equation. For the modes of the discrete spectrum and two fixed low frequencies, calculations are performed for an irregular two-layer waveguide model with fluid sediments, which is close to the actual conditions of low-frequency sound propagation in the coastal zone of the oceanic shelf. The calculated propagation loss curves are used as an example for comparison with results that can be obtained for the given waveguide model with the use of adiabatic and one-way propagation approximations.  相似文献   

5.
基于气流调制技术研究了封闭空间高强度次声产生方法。设计了大流量气流调制器,对调制器和赫尔姆霍兹共振腔组成的高声强次声产生装置的声场特性进行了数值仿真,制作出原理装置,并进行了实验测试。从理论上分析了不同调制频率和不同供气压力下调制器出口的声压幅度,分析了次声产生装置不同调制频率的声压幅度,分析了舱内声场的空间分布特性。实验结果表明:气流调制器设计合理、运行平稳,次声产生装置最大能产生161 dB的次声,测试舱声场均匀、声波信噪比较高,实验结果与数值仿真结果基本一致。  相似文献   

6.
Ya-Xiao Mo 《中国物理 B》2022,31(8):84301-084301
Large-scale topography, such as a seamount, substantially impacts low-frequency sound propagation in an ocean waveguide, limiting the application of low-frequency acoustic detecting techniques. A three-dimensional (3D) coupled-mode model is developed to calculate the acoustic field in an ocean waveguide with seamount topography and analyze the 3D effect. In this model, a correction is introduced in the bottom boundary, theoretically making the acoustic field satisfy the energy conservation. Furthermore, a large azimuth angle calculation range is obtained by using the operator theory and higher-order Padé approximation. Additionally, the model has advantages related to the coupling mode and parabolic equation theory. The couplings corresponding to the effects of range-dependent environment are fully considered, and the numerical implementation is kept feasible. After verifying the accuracy and reliability of the model, low-frequency sound propagation characteristics in the seamount environment are analyzed. The results indicate lateral variability in bathymetry can lead to out-of-plane effects such as the horizontal refraction phenomenon, while the coupling effect tends to restore the abnormal sound field and produces acoustic field diffraction behind the seamount. This model effectively considers the effects of the horizontal refraction and coupling, which are proportional to the scale of the seamount.  相似文献   

7.
针对开口房间内的变压器,在开口处布放若干扬声器和误差传声器构成虚拟声屏障,实验研究了虚拟声屏障对通过开口向外辐射的低频线谱噪声的控制效果。将15个次级源近似均匀分布在面积为2 m′ 2.7 m的开口面上,左右间距约58.5 cm、上下间距45-65 cm,15个误差传声器分别位于对应的次级源正前方1 m,系统采用自适应谐波降噪算法。结果表明:虚拟声屏障系统在误差点100 Hz、200 Hz和300 Hz的平均降噪量分别达到12.7 dB、19.9 dB和22.2 dB,虚拟声屏障对100 Hz、200 Hz、300 Hz线谱噪声的控制效果与单层封闭窗户相当,且内部合成参考信号,无需外接参考传声器。采用虚拟声屏障对开口房间内的变压器降噪的好处是实现室内外的自然通风,便于变压器的散热。  相似文献   

8.
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m × 2.74 m × 2.40 m. With this method, the sound was reproduced by a matrix of 4 × 5 loudspeakers in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one filter for each transducer. The optimal arrangement of the loudspeakers and the maximum frequency that can be equalized is analyzed theoretically in this paper. The presented experimental results show that sound equalization was possible from 10 Hz to approximately 425 Hz in the listening zone. A flat frequency response with deviations within ±5 decibels from the desired value was achieved. A higher demanding performance with deviations within ±1.5 decibels from a flat frequency response was attained in the interval between 20 Hz and 280 Hz. At the same time, the impulse response was quite well approximated to a delayed delta function in the listening zone. Examples of the spatial distribution of the sound field are also shown.  相似文献   

9.
10.
It has been shown experimentally that the diamagnetic effect appearing when electrons of a magnetized plasma in the antenna near field are accelerated under electron cyclotron resonance conditions can be used to generate low-frequency waves. The amplitude modulation of a signal supplied to the antenna is accompanied by the modulation of the diamagnetic effect and leads to the emission of waves at the modulation frequency to the surrounding plasma. In this process, the extended plasma region containing accelerated electrons serves as a parametric bodiless antenna. The results of the model laboratory experiments make it possible to propose a method for the parametric generation of low-frequency whistler waves in the Earth’s ionosphere by a powerful amplitude-modulated signal supplied to the satellite-borne antenna.  相似文献   

11.
The correction of the light intensity in one mode of a two-mode radiator oscillating at the difference frequency is calculated. The low-frequency noise is analyzed; the nature of this phenomenon is discussed.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 40–43, March, 1975.The authors thanks V. L. Bonch-Bruevich for discussion of these results.  相似文献   

12.
L.M. Brekhovskikh revealed and studied the important role played by inhomogeneous waves emitted by a point source when they pass through an interface with a medium in which the velocity of sound is lower, for example, from water to air. This paper studies the energy characteristics of sound emitted into air by an underwater point source. The energy transfer due to inhomogeneous waves is shown to cause the phenomenon of anomalous transparency of the interface for low-frequency sound. The anomalous transparency manifests itself in that the energy flux through the interface increases with decreasing frequency of sound and, at sufficiently low frequencies, almost all of the acoustic energy produced by the underwater source is emitted into air. Conversely, at high frequencies, when the contribution of the inhomogeneous waves becomes negligible, the water-to-air interface is similar to a perfectly reflecting surface and almost all of the acoustic energy produced by the source is emitted into water. The anomalous transparency phenomenon changes the conventional opinion on the possibility of acoustic coupling between points in water and air and on the role played by physical processes evolving in the water column in generating atmospheric acoustic noise.  相似文献   

13.
A numerical experiment is carried out to study the focusing of a low-frequency (100–300 Hz) sound field in a shallow-water acoustic waveguide typical of an oceanic shelf. Focusing with the use of time reversal of broadband acoustic signals, which is called time reversal mirror (TRM) of waves, is considered along with focusing by phase conjugation (PC) of a monochromatic sound field. It is demonstrated that, in the case of focusing by the TRM method in the waveguide of interest, it is sufficient to have a single source-receiving element. The use of a vertical array improves the quality of focusing. The quality achieved in the latter case proves to be approximately the same as that achieved in the case of focusing by phase conjugation of a monochromatic field at a frequency identical to the carrier frequency of the broadband signals. It is also shown that, in a range-independent waveguide, intense surface waves considerably reduce the quality of focusing. This effect is most pronounced in the case of using phase conjugation.  相似文献   

14.
The space-time spectral characteristics of the field of background internal waves (IW) are obtained for two oceanic shelf regions (the Atlantic shelf of the United States and the Kamchatka shelf) and analyzed. Within the framework of a numerical experiment, it is shown that the observed anisotropy of the IW field may considerably affect the low-frequency sound fluctuations in the aforementioned regions and, in particular, may change the interference invariant of the sound field.  相似文献   

15.
16.
The development of the fast field and parabolic equation solutions to the wave equation has made it possible to solve for the combined effects of refraction in a layered atmosphere and the interaction of sound with a complex impedance ground surface. In many respects the numerical methods have advanced beyond our understanding of the basic phenomena. In an earlier study [J. Acoust. Soc. Am. 89, 107-114 (1991)], the residue series solution for upward refraction was investigated and provided insight into the nature of the interaction of refraction and ground reflection. In this paper results are presented of a similar normal mode solution for downward refraction above a complex impedance ground surface. This model is used to investigate when the surface wave is excited for downward refraction conditions and to develop criteria for the maximum range of cylindrical decay as a function of phase and magnitude of the ground impedance and the magnitude of the sound velocity gradient.  相似文献   

17.
Conclusions Our studies have revealed that the spectral density of low-frequency current fluctuations in GaAs tunnel diodes can be described by the relation Wi(u, F)=f2 (u)mF, where the nonlinear function f2(u) is not proportional to the rms of excess diode current. The flicker nature of the current noise in tunnel diodes derives from conductance fluctuations on the p-n junction, which occur in tunnel diodes as well as in low-noise transistors at frequencies ranging from near zero to a few kiloheriz and produce noise of almost the same absolute intensty in both kinds of devices.Leningrad Polytechnic Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 20, No. 5, pp. 777–784, May, 1977.  相似文献   

18.
Experimental data on the long-range propagation of explosion-generated signals are analyzed. The experiments were performed in the northeastern Atlantic under the conditions of a two-axis underwater sound channel. The sound field in the upper channel was governed by the vertical redistribution of the ray structure and sound energy under the influence of a smooth increase in the depth of the channel’s axis along the propagation path. The explosions were produced in the upper sound channel at a depth of 200 m, which was constant along the path. The time structure of the sound field is analyzed for the upper channel (a reception depth of 200 m) and for deeper layers lying somewhat below the boundary between the upper and lower sound channels (a reception depth of 1200 m). The deviation of the decay law obtained for the sound field level in the upper channel from the cylindrical law is used to estimate the attenuation coefficient. The low-frequency (several hundreds of hertz) attenuation coefficients experimentally determined with allowance for the sound field redistribution agree well with the calculated sound absorption in seawater. The attenuation coefficients determined by the differential method also agree well with the absorption calculated by the formulas proposed earlier. The analysis of the time structure of the sound field near the boundary between the upper and lower channels reveals a permanent insonification of this horizon by weak water-path signals propagating with the velocity typical of the signals traveling in the upper channel.  相似文献   

19.
The data of repeated experiments on the long-range propagation of explosion-generated and cw signals in the Norwegian Sea in summer conditions (with a fully-developed underwater sound channel) are presented. These data are used to analyze the spatial and time structures of the sound field, as well as to estimate the attenuation coefficient at frequencies within 63–630 Hz and to determine its frequency dependence. The spatial variability of the propagation conditions is analyzed on the basis of the experimental data obtained for the propagation of explosion-generated signals along a 815-km-long path crossing the Norwegian and Lofoten Hollows.  相似文献   

20.
The data of several experiments on the long-range propagation of explosion-generated and tonal sound signals are analyzed. The experiments are performed by the Acoustics Institute in the Mediterranean Sea with a fully developed sound channel. A substantial difference is observed for the propagation conditions in the western and eastern parts of the sea. This difference concerns the vertical sound speed profiles, the time structures of the sound field in the underwater sound channel, the duration of the explosion-generated signal, and the positions of the convergence zones. The experiment is compared with calculations. The observed difference in the experimental and calculated positions of the first convergence zone is explained by the imperfection of the relation used to recalculate the salinity, water temperature, and hydrostatic pressure to the sound speed. In spite of substantial difference in the propagation conditions on two 600-km paths, the experimental low-frequency attenuation coefficients on these paths (and on some shorter ones) agree well with each other for the frequency band of several kilohertz. The data are also close to those published for another 600-km path. All the paths mentioned run in different parts of the Mediterranean Sea. The frequency dependence of sound attenuation (absorption) can be well described by the relation that accounts for the absorption caused by the boron present in the sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号