首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An operator \(S_{\varphi ,\psi }^{u}\in \mathcal {L}(L^2)\) is called the dilation of a truncated Toeplitz operator if for two symbols \(\varphi ,\psi \in L^{\infty }\) and an inner function u,
$$\begin{aligned} S_{\varphi ,\psi }^{u}f=\varphi P_uf+\psi Q_uf \end{aligned}$$
holds for \(f\in {L}^{2}\) where \(P_{u}\) denotes the orthogonal projection of \(L^2\) onto the model space \(\mathcal { K}_{u}^2=H^2{\ominus }{{u}H^2}\) and \(Q_u=I-P_u.\) In this paper, we study properties of the dilation of truncated Toeplitz operators on \(L^{2}\). In particular, we provide conditions for the dilation of truncated Toeplitz operators to be normal. As some applications, we give several examples of such operators.
  相似文献   

2.
Let (S,ω) be a weighted abelian semigroup, let M ω (S) be the semigroup of ω-bounded multipliers of S, and let \(\mathcal {A}\) be a strictly convex commutative Banach algebra with identity. It is shown that T is an onto isometric multiplier of \(\ell ^{1}(S,\omega , \mathcal {A})\) if and only if there exists an invertible σM ω (S), a unitary point \(a \in \mathcal {A}\), and a k>0 such that \(T(f)= ka{\sum }_{x \in S} f(x)\delta _{\sigma (x)}\) for each \(f={\sum }_{x \in S}f(x)\delta _{x} \in \ell ^{1}(S,\omega ,\mathcal {A})\). It is also shown that an isomorphism from \(\ell ^{1}(S_{1},\omega _{1},\mathcal {A})\) onto \(\ell ^{1}(S_{2},\omega _{2}, \mathcal {B})\) induces an isomorphism from \(M(\ell ^{1}(S_{1},\omega _{1},\mathcal {A}))\), the set of all multipliers of \(\ell ^{1}(S_{1},\omega _{1},\mathcal {A})\), onto \(M(\ell ^{1}(S_{2},\omega _{2},\mathcal {B}))\).  相似文献   

3.
Let \({\mathcal {C}}\) be a q-ary code of length n and size M, and \({\mathcal {C}}(i) = \{\mathbf{c}(i) \ | \ \mathbf{c}=(\mathbf{c}(1), \mathbf{c}(2), \ldots , \mathbf{c}(n))^{T} \in {\mathcal {C}}\}\) be the set of ith coordinates of \({\mathcal {C}}\). The descendant code of a sub-code \({\mathcal {C}}^{'} \subseteq {\mathcal {C}}\) is defined to be \({\mathcal {C}}^{'}(1) \times {\mathcal {C}}^{'}(2) \times \cdots \times {\mathcal {C}}^{'}(n)\). In this paper, we introduce a multimedia analogue of codes with the identifiable parent property (IPP), called multimedia IPP codes or t-MIPPC(nMq), so that given the descendant code of any sub-code \({\mathcal {C}}^{'}\) of a multimedia t-IPP code \({\mathcal {C}}\), one can always identify, as IPP codes do in the generic digital scenario, at least one codeword in \({\mathcal {C}}^{'}\). We first derive a general upper bound on the size M of a multimedia t-IPP code, and then investigate multimedia 3-IPP codes in more detail. We characterize a multimedia 3-IPP code of length 2 in terms of a bipartite graph and a generalized packing, respectively. By means of these combinatorial characterizations, we further derive a tight upper bound on the size of a multimedia 3-IPP code of length 2, and construct several infinite families of (asymptotically) optimal multimedia 3-IPP codes of length 2.  相似文献   

4.
Let \(\mathcal {A}\subset \left( {\begin{array}{c}[n]\\ r\end{array}}\right) \) be a compressed, intersecting family and let \(X\subset [n]\). Let \(\mathcal {A}(X)=\{A\in \mathcal {A}:A\cap X\ne \emptyset \}\) and \(\mathcal {S}_{n,r}=\left( {\begin{array}{c}[n]\\ r\end{array}}\right) (\{1\})\). Motivated by the Erd?s–Ko–Rado theorem, Borg asked for which \(X\subset [2,n]\) do we have \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\) for all compressed, intersecting families \(\mathcal {A}\)? We call X that satisfy this property EKR. Borg classified EKR sets X such that \(|X|\ge r\). Barber classified X, with \(|X|\le r\), such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \(\mathcal {A}\) has a maximal element, we sharpen this bound to \(n>\varphi ^{2}r\) implies \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\). We conclude by giving a generating function that speeds up computation of \(|\mathcal {A}(X)|\) in comparison with the naïve methods.  相似文献   

5.
In most classical holomorphic function spaces on the unit disk in which the polynomials are dense, a function f can be approximated in norm by its dilates \(f_r(z):=f(rz)~(r<1)\). We show that this is not the case for the de Branges–Rovnyak spaces \(\mathcal{H}(b)\). More precisely, we exhibit a space \(\mathcal{H}(b)\) in which the polynomials are dense and a function \(f\in \mathcal{H}(b)\) such that \(\lim _{r\rightarrow 1^-}\Vert f_r\Vert _{\mathcal{H}(b)}=\infty \). On the positive side, we prove the following approximation theorem for Toeplitz operators on general de Branges–Rovnyak spaces \(\mathcal{H}(b)\). If \((h_n)\) is a sequence in \(H^\infty \) such that \(\Vert h_n\Vert _{H^\infty }\le 1\) and \(h_n(0)\rightarrow 1\), then \(\Vert T_{\overline{h}_n}f-f\Vert _{\mathcal{H}(b)}\rightarrow 0\) for all \(f\in \mathcal{H}(b)\). Using this result, we give the first constructive proof that, if b is a nonextreme point of the unit ball of \(H^\infty \), then the polynomials are dense in \(\mathcal{H}(b)\).  相似文献   

6.
Denote by \({{\mathcal {G}}}_k(V)\) the Grassmannian of the k-subspaces of a vector space V over a field \({\mathbb {K}}\). There is a natural correspondence between hyperplanes H of \({\mathcal {G}}_k(V)\) and alternating k-linear forms on V defined up to a scalar multiple. Given a hyperplane H of \({{\mathcal {G}}_k}(V)\), we define a subspace \(R^{\uparrow }(H)\) of \({{\mathcal {G}}_{k-1}}(V)\) whose elements are the \((k-1)\)-subspaces A such that all k-spaces containing A belong to H. When \(n-k\) is even, \(R^{\uparrow }(H)\) might be empty; when \(n-k\) is odd, each element of \({\mathcal {G}}_{k-2}(V)\) is contained in at least one element of \(R^{\uparrow }(H)\). In the present paper, we investigate several properties of \(R^{\uparrow }(H)\), settle some open problems and propose a conjecture.  相似文献   

7.
Let M be a left R-module, \({\mathcal{A}}\)be a family of some submodules of M and \({\mathcal{B}}\)be a family of some left R-modules. In this article, we introduce and characterize \({\mathcal{A}}\)-coherent, \({P\mathcal{A}}\), \({F\mathcal{A}}\), M-\({\mathcal{A}}\)-injective (flat) and strongly \({\mathcal{B}}\)-injective (flat) modules, which are generalizations of coherent, PS, FS, M-injective (flat) and strongly M-injective modules, respectively. We extend some known results to this general structure.  相似文献   

8.
Let H be a real algebraic group acting equivariantly with finitely many orbits on a real algebraic manifold X and a real algebraic bundle \({\mathcal {E}}\) on X. Let \(\mathfrak {h}\) be the Lie algebra of H. Let \(\mathcal {S}(X,{\mathcal {E}})\) be the space of Schwartz sections of \({\mathcal {E}}\). We prove that \(\mathfrak {h}\mathcal {S}(X,{\mathcal {E}})\) is a closed subspace of \(\mathcal {S}(X,{\mathcal {E}})\) of finite codimension. We give an application of this result in the case when H is a real spherical subgroup of a real reductive group G. We deduce an equivalence of two old conjectures due to Casselman: the automatic continuity and the comparison conjecture for zero homology. Namely, let \(\pi \) be a Casselman–Wallach representation of G and V be the corresponding Harish–Chandra module. Then the natural morphism of coinvariants \(V_{\mathfrak {h}}\rightarrow \pi _{\mathfrak {h}}\) is an isomorphism if and only if any linear \(\mathfrak {h}\)-invariant functional on V is continuous in the topology induced from \(\pi \). The latter statement is known to hold in two important special cases: if H includes a symmetric subgroup, and if H includes the nilradical of a minimal parabolic subgroup of G.  相似文献   

9.
Let \(n \ge r \ge s \ge 0\) be integers and \(\mathcal {F}\) a family of r-subsets of [n]. Let \(W_{r,s}^{\mathcal {F}}\) be the higher inclusion matrix of the subsets in \({{\mathcal {F}}}\) vs. the s-subsets of [n]. When \(\mathcal {F}\) consists of all r-subsets of [n], we shall simply write \(W_{r,s}\) in place of \(W_{r,s}^{\mathcal {F}}\). In this paper we prove that the rank of the higher inclusion matrix \(W_{r,s}\) over an arbitrary field K is resilient. That is, if the size of \(\mathcal {F}\) is “close” to \({n \atopwithdelims ()r}\) then \({{\mathrm{rank}}}_{K}( W_{r,s}^{\mathcal {F}}) = {{\mathrm{rank}}}_{K}(W_{r,s})\), where K is an arbitrary field. Furthermore, we prove that the rank (over a field K) of the higher inclusion matrix of r-subspaces vs. s-subspaces of an n-dimensional vector space over \({\mathbb {F}}_q\) is also resilient if \(\mathrm{char}(K)\) is coprime to q.  相似文献   

10.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

11.
A sufficient criterion for the map \({C_{A, B}(S) = ASB}\) to be supercyclic on certain algebras of operators on Banach spaces is given. If T is an operator satisfying the Supercyclicity Criterion on a Hilbert space H, then the linear map \({C_{T}(V) = TVT^*}\) is shown to be norm-supercyclic on the algebra \({\mathcal{K}(H)}\) of all compact operators, COT-supercyclic on the real subspace \({\mathcal{S}(H)}\) of all self-adjoint operators and weak*-supercyclic on \({\mathcal{L}(H)}\) of all bounded operators on H. Examples including operators of the form \({C_{B_w, F_\mu}}\) are provided, where Bw and \({F_\mu}\) are respectively backward and forward shifts on Banach sequence spaces.  相似文献   

12.
We show that every frame can be essentially embedded in a Boolean frame, and that this embedding is the maximal essential extension of the frame in the sense that it factors uniquely through any other essential extension. This extension can be realized as the embedding \(L \rightarrow \mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)\), where \(L \rightarrow \mathcal {N}(L)\) is the familiar embedding of L into its congruence frame \(\mathcal {N}(L)\), and \(\mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)\) is the Booleanization of \(\mathcal {N}(L)\). Finally, we show that for subfit frames the extension can also be realized as the embedding \(L \rightarrow {{\mathrm{S}}}_\mathfrak {c}(L)\) of L into its complete Boolean algebra \({{\mathrm{S}}}_\mathfrak {c}(L)\) of sublocales which are joins of closed sublocales.  相似文献   

13.
We construct two new G-equivariant rings: \(\mathcal{K}(X,G)\), called the stringy K-theory of the G-variety X, and \(\mathcal{H}(X,G)\), called the stringy cohomology of the G-variety X, for any smooth, projective variety X with an action of a finite group G. For a smooth Deligne–Mumford stack \(\mathcal{X}\), we also construct a new ring \(\mathsf{K}_{\mathrm{orb}}(\mathcal{X})\) called the full orbifold K-theory of \(\mathcal{X}\). We show that for a global quotient \(\mathcal{X} = [X/G]\), the ring of G-invariants \(K_{\mathrm{orb}}(\mathcal{X})\) of \(\mathcal{K}(X,G)\) is a subalgebra of \(\mathsf{K}_{\mathrm{orb}}([X/G])\) and is linearly isomorphic to the “orbifold K-theory” of Adem-Ruan [AR] (and hence Atiyah-Segal), but carries a different “quantum” product which respects the natural group grading.We prove that there is a ring isomorphism \(\mathcal{C}\mathbf{h}:\mathcal{K}(X,G)\to\mathcal{H}(X,G)\), which we call the stringy Chern character. We also show that there is a ring homomorphism \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}:\mathsf{K}_{\mathrm{orb}}(\mathcal{X}) \rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\), which we call the orbifold Chern character, which induces an isomorphism \(Ch_{\mathrm{orb}}:K_{\mathrm{orb}}(\mathcal{X})\rightarrow H^\bullet_{\mathrm{orb}}(\mathcal{X})\) when restricted to the sub-algebra \(K_{\mathrm{orb}}(\mathcal{X})\). Here \(H_{\mathrm{orb}}^\bullet(\mathcal{X})\) is the Chen–Ruan orbifold cohomology. We further show that \(\mathcal{C}\mathbf{h}\) and \(\mathfrak{C}\mathfrak{h}_\mathrm{orb}\) preserve many properties of these algebras and satisfy the Grothendieck–Riemann–Roch theorem with respect to étale maps. All of these results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.We further prove that \(\mathcal{H}(X,G)\) is isomorphic to Fantechi and Göttsche’s construction [FG, JKK]. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results greatly simplify the definitions of the Fantechi–Göttsche ring, Chen–Ruan orbifold cohomology, and the Abramovich–Graber–Vistoli orbifold Chow ring.We conclude by showing that a K-theoretic version of Ruan’s Hyper-Kähler Resolution Conjecture holds for the symmetric product of a complex projective surface with trivial first Chern class.  相似文献   

14.
Let n be a positive integer, and \(\mathfrak {A}(n)=\mathbb {F}[x]/(x^{p^{n}})\), the divided power algebra over an algebraically closed field \(\mathbb {F}\) of prime characteristic p >?2. Let π(n) be the tensor product of \(\mathfrak {A}(n)\) and the Grassmann superalgebra \(\bigwedge (1)\) in one variable. The Zassenhaus superalgebra \(\mathcal {Z}(n)\) is defined to be the Lie superalgebra of the special super derivations of the superalgebra π(n). In this paper we study simple modules over the Zassenhaus superalgebra \(\mathcal {Z}(n)\) with p-characters of height 0. We give a complete classification of the isomorphism classes of such simple modules and determine their dimensions. A sufficient and necessary condition for the irreducibility of Kac modules is obtained.  相似文献   

15.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

16.
Let \(\mathcal {F}(h)\) be the number of imaginary quadratic fields with class number h. In this note, we improve the error term in Soundararajan’s asymptotic formula for the average of \(\mathcal {F}(h)\). Our argument leads to a similar refinement of the asymptotic for the average of \(\mathcal {F}(h)\) over odd h, which was recently obtained by Holmin, Jones, Kurlberg, McLeman and Petersen.  相似文献   

17.
Let \({\mathcal{R}}\) be a unital commutative ring and \({\mathcal{M}}\) be a 2-torsion free central \({\mathcal{R}}\) -bimodule. In this paper, for \({n \geqq 3}\), we show that every local derivation from M n (\({\mathcal{R}}\)) into M n (\({\mathcal{M}}\)) is a derivation.  相似文献   

18.
We study nonlinear elliptic equations in divergence form
$$\text {div }{\mathcal A}(x,Du)=\text {div } G.$$
When \({\mathcal A}\) has linear growth in D u, and assuming that \(x\mapsto {\mathcal A}(x,\xi )\) enjoys \(B^{\alpha }_{\frac {n}\alpha , q}\) smoothness, local well-posedness is found in \(B^{\alpha }_{p,q}\) for certain values of \(p\in [2,\frac {n}{\alpha })\) and \(q\in [1,\infty ]\). In the particular case \({\mathcal A}(x,\xi )=A(x)\xi \), G = 0 and \(A\in B^{\alpha }_{\frac {n}\alpha ,q}\), \(1\leq q\leq \infty \), we obtain \(Du\in B^{\alpha }_{p,q}\) for each \(p<\frac {n}\alpha \). Our main tool in the proof is a more general result, that holds also if \({\mathcal A}\) has growth s?1 in D u, 2 ≤ sn, and asserts local well-posedness in L q for each q > s, provided that \(x\mapsto {\mathcal A}(x,\xi )\) satisfies a locally uniform VMO condition.
  相似文献   

19.
In this paper we consider the special case where a signal x\({\in }\,\mathbb {C}^{N}\) is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform \(\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}\). In case of exact Fourier measurements we require only \({\mathcal O}\)(m\(\log \)m) arithmetical operations. For noisy measurements, we propose a stable \({\mathcal O}\)(m\(\log \)N) algorithm.  相似文献   

20.
In earlier papers we studied direct limits \({(G,\,K) = \varinjlim\, (G_n,K_n)}\) of two types of Gelfand pairs. The first type was that in which the G n /K n are compact Riemannian symmetric spaces. The second type was that in which \({G_n = N_n\rtimes K_n}\) with N n nilpotent, in other words pairs (G n , K n ) for which G n /K n is a commutative nilmanifold. In each we worked out a method inspired by the Frobenius–Schur Orthogonality Relations to define isometric injections \({\zeta_{m,n}: L^2(G_n/K_n) \hookrightarrow L^2(G_m/K_m)}\) for mn and prove that the left regular representation of G on the Hilbert space direct limit \({L^2(G/K) := \varinjlim L^2(G_n/K_n)}\) is multiplicity-free. This left open questions concerning the nature of the elements of L 2(G/K). Here we define spaces \({\mathcal{A}(G_n/K_n)}\) of regular functions on G n /K n and injections \({\nu_{m,n} : \mathcal{A}(G_n/K_n) \to \mathcal{A}(G_m/K_m)}\) for mn related to restriction by \({\nu_{m,n}(f)|_{G_n/K_n} = f}\). Thus the direct limit \({\mathcal{A}(G/K) := \varinjlim \{\mathcal{A}(G_n/K_n), \nu_{m,n}\}}\) sits as a particular G-submodule of the much larger inverse limit \({\varprojlim \{\mathcal{A}(G_n/K_n), {\rm restriction}\}}\). Further, we define a pre Hilbert space structure on \({\mathcal{A}(G/K)}\) derived from that of L 2(G/K). This allows an interpretation of L 2(G/K) as the Hilbert space completion of the concretely defined function space \({\mathcal{A}(G/K)}\), and also defines a G-invariant inner product on \({\mathcal{A}(G/K)}\) for which the left regular representation of G is multiplicity-free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号