首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compared with the metal antenna metasurface,the dielectric metasurface has better optical characteristics and smaller ohmic loss in the optical band,which makes it superlor.An elliptical cylindrical nanostructured antenna is designed using GaP with excellent transmission characteristics in the visible band.This structure has a transmjssion efficiency of up to 0.96 in the visible light band.Based on the Pancharatnam-Berry(PB) phase control principle,the metasurface structure composed of the antennas is studied,and its abnormal refraction metasurface and focusing meta-lens are analyzed.It is a highly ef Rcient sub-wavelength structure,and promises great potential for the applications of circular polarization optics,nanolithography,dense storage and biophotonics.  相似文献   

2.
Guangzhou Geng 《中国物理 B》2022,31(12):124207-124207
The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spin-controlled nanophotonic devices. However, realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase, which reduces the flexibility in various applications. Here, we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response. The metasurface consists of an array of dielectric nanofins, where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces, which enables to break the conjugated characteristic of phase gradient. Thanks to the superiority of the phase modulation ability, when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm, the left-handed circular polarization (LCP) light exhibits an anomalous refraction angle of 28.9°, while the right-handed circular polarization (RCP) light transmits directly. The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities, especially with metasurfaces in a compact space.  相似文献   

3.
王宗鹏  邓娅  孙连峰 《中国物理 B》2017,26(11):114101-114101
We propose a low-cost plasmonic metasurface integrated with single-layer graphene for dynamic modulation of midinfrared light. The plasmonic metasurface is composed of an array of split magnetic resonators(MRs) where a nano slit is included. Extraordinary optical transmission(EOT) through the deep subwavelength slit is observed by excitation of magnetic plasmons in the split MRs. Furthermore, the introduction of the slit provides strongly enhanced fields around the graphene layer, leading to a large tuning effect on the EOT by changing the Fermi energy of the graphene. The proposed metasurface can be utilized as an optical modulator with a broad modulation width(15 μm) or an optical switch with a high on/off ratio( 100). Meanwhile, the overall thickness of the metasurface is 430 nm, which is tens of times smaller than the operating wavelength. This work may have potential applications in mid-infrared optoelectrical devices and give insights into reconfigurable flat optics and optoelectronics.  相似文献   

4.
邓俊鸿  李贵新 《物理学报》2017,66(14):147803-147803
在线性光学范畴内,人们已经通过亚波长尺度的超薄超构表面成功实现了对光的众多新颖特性的调控功能.其主要理念是通过对具有亚波长尺度且空间方向变化的超构功能基元进行特定的排列,从而实现对光的偏振、相位和振幅的有效控制.近来,超构表面上的非线性光学特性也引起了大家的广泛关注.在本综述中,我们对非线性光学超构表面的设计、超构功能单元的材料和对称性选择、非线性手性光学、非线性贝里几何相位和非线性波前整形等内容进行了总结;最后对非线性光学超构表面在调控光与物质的相互作用中面临的挑战和前景进行了展望.  相似文献   

5.
高喜  余行阳  曹卫平  姜彦南  于新华 《中国物理 B》2016,25(12):128102-128102
An ultrathin micro-split Jerusalem-cross metasurface is proposed in this paper, which can efficiently convert the linear polarization of electromagnetic(EM) wave into the circular polarization in ultra-wideband. By symmetrically employing two micro-splits on the horizontal arm(in the x direction) of the Jerusalem-cross structure, the bandwidth of the proposed device is significantly extended. Both simulated and experimental results show that the proposed metasurface is able to convert linearly polarized waves into circularly polarized waves in a frequency range from 12.4 GHz to 21 GHz, with an axis ratio better than 1 d B. The simulated results also show that such a broadband and high-performance are maintained over a wide range of incident angle. The presented polarization converter can be used in a number of areas, such as spectroscopy and wireless communications.  相似文献   

6.
Dielectric metasurfaces are two‐dimensional structures composed of nano‐scatterers that manipulate the phase and polarization of optical waves with subwavelength spatial resolution, thus enabling ultra‐thin components for free‐space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have fixed parameters. Here, we demonstrate highly tunable dielectric metasurface devices based on subwavelength thick silicon nano‐posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 μm to 1400 μm (over 952 diopters change in optical power) through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50%. The demonstrated tunable metasurface concept is highly versatile for developing ultra‐slim, multi‐functional and tunable optical devices with widespread applications ranging from consumer electronics to medical devices and optical communications.

  相似文献   


7.
Metasurfaces have demonstrated unprecedented capabilities in modulating the polarization and phase of electromagnetic waves and formed an emerging field of research, driving the exploitation of versatile compact devices. In this work, one transmission-mode, multichannel all-silicon metasurface platform that can implement functionalities separately in two orthogonally polarized output fields under linearly polarized incidences is proposed, which can effectively promote the design flexibility. Specifically, a single metasurface can realize multiple independent target phase distributions carrying specific phase relationships, thus enabling different information processing in different linear polarization states. For proof-of-principle experimental exhibitions, a monolayer metasurface composed of silicon pillars is designed, fabricated, and characterized to demonstrate the ability of multi-dimensional light field control, such as polarization-switchable focusing beam. Moreover, the other designed metasurface can generate polarization-switchable Bessel vortex beams under linearly polarized incidences, which also verifies the flexibility and practicality of such platform. This metasurface platform may lead to new optical components, involving multichannel singular beam generators, information encoders, and holographic encryption devices.  相似文献   

8.
李文惠  张介秋  屈绍波  沈杨  余积宝  范亚  张安学 《物理学报》2016,65(2):24101-024101
本文通过设计出一种反射型极化旋转超表面,在8—12 GHz频域内实现高效的极化旋转,并将其加载于微带缝隙天线下方构成新型的极化旋转超表面天线,利用超表面的90°极化旋转效应,成功实现了天线的圆极化辐射调制.仿真与实验结果表明:圆极化天线的中心工作频率为GHz,阻抗带宽为8.3—10 GHz.当微带缝隙天线与极化旋转超表面的间距H=4.5mm时,天线在8.3—8.8 GHz频带内实现了圆极化辐射;当mm时,天线在8.8—9.3 GHz频带内实现了圆极化辐射;当=8mm时,天线在9.3—10 GHz频带内实现了圆极化辐射.实验结果与仿真结果相符,证明了此种设计方法的有效性,也为微带缝隙天线的圆极化设计提供了一种新的途径.  相似文献   

9.
Chiral metasurfaces have different electromagnetic responses with circularly polarized lights, showing as circular dichroism and optical activity. Here, a novel kind of all-silicon chiral metasurface is proposed by introducing destructive interference between achiral meta-atoms. The maximum value of circular dichroism spectra can reach 0.49. By adding an antireflective layer at the side of the silicon substrate, the maximum circular dichroism reaches 0.54. What is more, the bandwidth of circular dichroism greater than 0.4 reaches 0.15 THz. Two samples are fabricated to verify the feasibility of this scheme, and the experimental results are in good agreement with the simulations. In addition, the proposed scheme can also be used to generate various interesting functions, such as beam control and vortex generator. This flexible and efficient implementation solution of chiral metasurface can bring new ideas to the development of chiral devices in the future.  相似文献   

10.
本文基于新型材料狄拉克半金属(Dirac semimetals,DSs),设计了一款高纯度宽频带可调谐线偏振转换器,偏振转换率(PCR)超过99%的相对带宽为15.72%。在频段5.25~6.14 THz内,椭度角接近0°,偏振方位角约等于-90°。这种转换性能主要是源于顶层超表面的各向异性和局域的表面等离子体激元谐振(LSPRs)的激发。此外,通过改变费米能的大小可以使所设计的偏振转换器在不同的频带范围内实现宽频带偏振转换。最后,通过半解析的方法对偏振转换特性进行了理论分析。该设计在太赫兹通信、成像、无损检测等领域具有一定的应用价值,同时为宽频带可调谐太赫兹线偏振转换器的设计提供了新思路。  相似文献   

11.
付亚男  张新群  赵国忠  李永花  于佳怡 《物理学报》2017,66(18):180701-180701
提出了一个基于谐振环结构的宽带且高效的太赫兹线偏振转换器.该结构由金属-电介质-金属三层构成,位于顶层的是基于开口谐振环的超表面,中间为介质层,底部为金属板.实验结果表明,该结构可以在0.59-1.24 THz频率范围内将线偏振的太赫兹波偏振方向旋转90°,转换率超过80%.通过计算该结构在所研究的频率范围内反射光的偏振角和椭圆角,证实了该结构可以在较宽的频率范围内实现高效的线偏振转换.对该结构在偏振转换率高的频率下表面电流和电场进行仿真,分析了高偏振转换率和宽带的机理.同时,研究了该结构的偏振转换率对入射角以及偏振角的依赖性,结果表明该结构在0°-30°入射角范围内、-10°-10°偏振角范围内均有很好的偏振转换性能.  相似文献   

12.
A multi-focus optical fiber lens is numerically demonstrated based on an all-dielectric metasurface structure. The metasurface consists of an array of rectangular silicon resonators with varying widths in order to obtain the required phase distribution. The core diameter of the multimode fiber is large enough to contain sufficient resonance units. The spatial distribution of the dielectric resonators is dictated by spatial multiplexing, including interleaving meta-atoms and lens aperture division, to achieve multi-focus properties. The proposed optical fiber metalens can produce two or three focal points along the longitudinal direction with high focusing efficiency. The size of every focal point is close to the diffraction limit, and the relative intensity on each focus can be controlled by adjusting the number of the respective resonators. The proposed optical fiber lens will have a great potential in the fields of integrated optics and multifunctional micro/nano devices.  相似文献   

13.
刘桐君  习翔  令永红  孙雅丽  李志伟  黄黎蓉 《物理学报》2015,64(23):237802-237802
偏振不敏感超表面在实际应用中具有重要意义, 本文提出了一种光通信波段的、对偏振不敏感的异常反射式梯度超表面, 这种超表面对于x-偏振和y-偏振入射光都能够实现高效率的异常反射, 表现出偏振不敏感特性, 为解决传统反射式超表面的偏振敏感性问题提供了一种新途径. 它采用金属(Au)-绝缘层(SiO2)-金属(Au)结构, 超表面的超晶胞由五个各向同性的、尺寸不同的十字形基本结构单元组成. 仿真结果表明, 这种超表面结构对不同线偏振入射平面光波有几乎相同的相位和振幅响应; 合理的选取五个基本结构单元的尺寸, 在一个超晶胞内实现了2πup 相位的覆盖, 反射光波阵面畸变小, 而且反射光都集中到异常反射级次, 在工作波长1480 nm处具有较高的异常反射率(~ 70%). 此外, 这种结构的超表面在-30°–0°的宽入射角度范围内都具有偏振不敏感的异常反射特性. 在光通信、光信号处理、显示成像等领域具有潜在的应用前景.  相似文献   

14.
Pengtao Lai 《中国物理 B》2022,31(9):98102-098102
Coding metasurfaces have attracted tremendous interests due to unique capabilities of manipulating electromagnetic wave. However, archiving transmissive coding metasurface is still challenging. Here we propose a transmissive anisotropic coding metasurface that enables the independent control of two orthogonal polarizations. The polarization beam splitter and the orbital angular momentum (OAM) generator have been studied as typical applications of the anisotropic 2-bit coding metasurface. The simulated far field patterns illustrate that the x and y polarized electromagnetic waves are deflected into two different directions, respectively. The anisotropic coding metasurface has been experimentally verified to realize an OAM beam with l = 2 of right-handed polarized wave, resulting from both contributions from linear-to-circular polarization conversion and the phase profile modulation. This work is beneficial to enrich the polarization manipulation field and develop transmissive coding metasurfaces.  相似文献   

15.
李小兵  陆卫兵  刘震国  陈昊 《物理学报》2018,67(18):184101-184101
可调控超表面可用于动态控制空间波束的方向,具有很高的应用价值.石墨烯是一种可调的二维材料,它的电导率可以通过外加电压控制,利用这一特性可设计基于石墨烯的可调控超表面.超表面控制反射波束时的理论依据是广义的斯涅耳反射定律.反射角度可通过沿超表面的相位梯度进行控制.但是这种方法有局限性,当超表面单元固定时,反射角度只能取有限个离散的值.本文设计了基于石墨烯的可调超表面,并采用一种基于卷积运算定理的波束控制方法,实现了反射波角度的大范围动态控制.在1.75 THz垂直入射平面波激励下,反射角度可以从5?变化到70?,间隔小于10?.数值模拟结果与理论计算结果一致.  相似文献   

16.
The photonic spin‐orbit interaction (PSOI) in inhomogeneous anisotropic metasurface has drawn much attentions recently due to its superior ability to manipulate light wave in the deep‐subwavelength scale. Traditional methods involving PSOI are limited to operational spectral bandwidth owing to the intrinsic dispersion of the constitutive materials. In this paper, a helicity‐multiplexing scheme is proposed to achieve independent control of the PSOI in both the spectral and spatial domains by combining the broadband characteristic with polarization dependence of the metasurface. Two simultaneous functions of multicolor holographic display and polarization encryption are experimentally demonstrated with a single metasurface perforated with nanoholes. Although the optical response of the nanoholes themselves are almost independent of the light wavelength, the obtained image can have abundant spectral information. The approach proposed here is promising for realizing multifunction optical device, multicolor display, optical storage and information encryption.  相似文献   

17.
基于石墨烯的太赫兹波散射可调谐超表面   总被引:1,自引:0,他引:1       下载免费PDF全文
张银  冯一军  姜田  曹杰  赵俊明  朱博 《物理学报》2017,66(20):204101-204101
设计了一个可调谐的太赫兹超表面,由在随机反射超表面基底中嵌入可偏置的双层石墨烯构成,可以实现对太赫兹波散射特性的动态调控.全波仿真试验结果证实了所预期的超表面散射可调性能.通过增大偏置电压提升石墨烯的费米能级,使得该超表面的太赫兹波散射样式从漫反射逐渐向镜面反射过渡,从而实现散射特性的连续调控,且该超表面具有对电磁波极化角度不敏感的特点.这些特性使得该超表面能很好地融合到变化的环境中,在太赫兹隐身方面具有潜在的应用价值.  相似文献   

18.
The terahertz technology has attracted considerable attention because of its potential applications in various fields.However,the research of functional devices,including polarization converters,remains a major demand for practical applications.In this work,a reflective dual-functional terahertz metadevice is presented,which combines two different polarization conversions through using a switchable metasurface.Different functions can be achieved because of the insulator-to-metal transition of vanadium dioxide(VO2).At room temperature,the metadevice can be regarded as a linear-to-linear polarization convertor containing a gold circular split-ring resonator(CSRR),first polyimide(PI)spacer,continuous VO2 film,second PI spacer,and gold substrate.The converter possesses a polarization conversion ratio higher than 0.9 and a bandwidth ratio of 81%in a range from 0.912 THz to 2.146 THz.When the temperature is above the insulator-to-metal transition temperature(approximately 68℃)and VO2 becomes a metal,the metasurface transforms into a wideband linear-to-circular polarization converter composed of the gold CSRR,first PI layer,and continuous VO2 film.The ellipticity is close to-1,while the axis ratio is lower than 3 dB in a range of 1.07 THz-1.67 THz.The metadevice also achieves a large angle tolerance and large manufacturing tolerance.  相似文献   

19.
Resonant responses of metasurface enable effective control over the polarization properties of lights. In this paper,we demonstrate a double-rod metasurface for broadband polarization conversion in the mid-infrared region. The metasurface consists of a metallic double-rod array separated from a reflecting ground plane by a film of zinc selenide. By superimposing three localized resonances, cross polarization conversion is achieved over a bandwidth of 16.9 THz around the central frequency at 34.6 THz with conversion efficiency exceeding 70%. The polarization conversion performance is in qualitative agreement with simulation. The surface current distributions and electric field profiles of the resonant modes are discussed to analyze the underlying physical mechanism. Our demonstrated broadband polarization conversion has potential applications in the area of mid-infrared spectroscopy, communication, and sensing.  相似文献   

20.
王帅  邓子岚  王发强  王晓雷  李向平 《物理学报》2019,68(7):77801-077801
在环形凹槽包围环形金属纳米孔的异常透射器件的研究中,环形凹槽可以将携带光子角动量的入射光转化为涡旋表面等离极化激元,这些涡旋表面等离极化激元传向几何中心并与直接照射在环形纳米孔上的光子发生干涉,当相互干涉的光子满足相位匹配条件时,环形纳米孔的透射率得到显著增强.本文利用理论分析和数值计算的方法研究了光子角动量和凹槽半径对环形纳米孔透射过程的影响.我们发现调节环形凹槽的半径和入射光携带的光子角动量可以调节光子在金膜上表面传输时的径向传播相位,进而影响了环形纳米孔附近的干涉电场强度,最终决定了环形纳米孔的透射率,进而可以通过调节凹槽的半径来调节携带不同光子角动量的光束在环形纳米孔的透射率.本文的研究结果对基于涡旋表面等离极化激元的异常透射器件的设计具有重要的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号