首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang  Tao  Cao  Le  Zhang  Xiao-Ming  Ding  Han 《Nonlinear dynamics》2021,104(4):3771-3780
Nonlinear Dynamics - Stability prediction is an efficient way to avoid milling chatter which is one of the major limitations in increasing efficiency of milling operations. Prediction accuracy is...  相似文献   

2.
Study of milling stability with Hertz contact stiffness of ball bearings   总被引:2,自引:0,他引:2  
This present work examines the stability and nonlinear responses of a spindle milling system supported by ball bearings. A shaft finite element based on Timoshenko beam theory is employed to model the spindle, and modal reduction method is therefore adopted for saving the numerical calculating time. The issues of evaluating the effects of the ball bearing Hertz contact stiffness are consequently addressed. It is found that suitable constant bearing stiffness can be adopted to replace the nonlinear nonsmooth Hertz stiffness in prediction of the critical cutting depth of the milling system in certain bearing configuration conditions. For the constant bearing stiffness can be obtained by experiment, this replacement will undoubtedly simplify the spindle-bearing milling system. But with the increase in the bearing clearance, the spindle milling system will present obvious nonlinear behaviors, and the nonlinear Hertz contact bearing stiffness will take over. Isolated islands of chatter vibration, which are induced by the nonlinear nonsmooth bearing Hertz stiffness, can be found exist in milling processes in large bearing clearance conditions.  相似文献   

3.
On the basis of Runge–Kutta methods, this paper proposes two semi-analytical methods to predict the stability of milling processes taking a regenerative effect into account. The corresponding dynamics model is concluded as a coefficient-varying periodic differential equation with a single time delay. Floquet theory is adopted to predict the stability of machining operations by judging the eigenvalues of the state transition matrix. This paper firstly presents the classical fourth-order Runge–Kutta method (CRKM) to solve the differential equation. Through numerical tests and analysis, the convergence rate and the approximation order of the CRKM is not as high as expected, and only small discrete time step size could ensure high computation accuracy. In order to improve the performance of the CRKM, this paper then presents a generalized form of the Runge–Kutta method (GRKM) based on the Volterra integral equation of the second kind. The GRKM has higher convergence rate and computation accuracy, validated by comparisons with the semi-discretization method, etc. Stability lobes of a single degree of freedom (DOF) milling model and a two DOF milling model with the GRKM are provided in this paper.  相似文献   

4.
Chaotic vibrations in high-speed milling   总被引:2,自引:0,他引:2  
A large number of literatures are devoted to the stability of the milling process and various control methods for chatter suppression. But chaotic dynamics beyond the stable region has not been considered extensively. Moreover, modeling issues for chaotic motion need more challenge for accurate prediction of its complex dynamical behavior. This paper presents a detailed two-degree-of-freedom mechanics based model for the study of chaotic vibrations in milling. Segmental multiple regenerative effect that is the principle feature of nonlinear vibrations in milling processes besides two state dependent time delays has been considered. Exact geometrical formulation of multiple regenerative effects by considering simultaneously different numbers of delayed tool positions over the cutting zone is presented for the first time. Phase portrait, bifurcation diagram, largest Lyapunov exponent, and surface profile were calculated for a given machine tool and workpiece parameters. The simulation results show positive values of the largest Lyapunov exponent corresponding to the existence of chaos in high-speed milling operations. Also, investigation of the machined surface of the workpiece formed by the helical mill demonstrates an irregular pattern on the surface.  相似文献   

5.
Metal cutting is a complex nonlinear dynamical process. Analysis of signals from turning operation shows that the machining exhibits a low-dimensional chaos. The self-excited vibration caused by the regenerative effect, usually called chatter, can be created during machining by increasing one cutting parameter, while keeping all other cutting parameters constant. A cross-recurrence plot (CRP) enables the study of synchronisation or time differences in two time series. CRP-based methodology is used to find the point of transition from normal cutting to chatter cutting. In this method, two signals, one input signal (power to the lathe motor) and one output signal (cutting tool vibration), are recorded simultaneously at a constant sampling rate during cutting. A time series is generated from the recorded values, and cross-recurrence plot is prepared. This CRP can be quantified using Cross-Recurrence Quantification Analysis (CRQA). Abrupt variation in the CRQA parameters indicates the onset of chatter vibration. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP-based methodology is capable of recognising the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material.  相似文献   

6.
In this paper, the occurrence of various types of bifurcation including symmetry breaking, period-doubling (flip) and secondary Hopf (Neimark) bifurcations in milling process with tool-wear and process damping effects are investigated. An extended dynamic model of the milling process with tool flank wear, process damping and nonlinearities in regenerative chatter terms is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. Non-autonomous parametrically excited equations of the system with time delay terms are developed. The multiple-scale approach is used to construct analytical approximate solutions under primary resonance. Periodic, quasi-periodic and chaotic behavior of the limit cycles is predicted in the presence of regenerative chatter. Detuning parameter (deviation of the tooth passing frequency from the chatter frequency), damping ratio (affected by process damping) and tool-wear width are the bifurcation parameters. Multiple period-doubling and Hopf bifurcations occur when the detuning parameter is varied. As the damping ratio changes, symmetry breaking bifurcation is observed whereas the variation of tool wear width causes both symmetry breaking and Hopf bifurcations. Also, under special damping specifications, chaotic behavior is seen following the Hopf bifurcation.  相似文献   

7.
When analyzing the computational efficiency of the semi-discretization method for periodic delay-differential equations, the computation of the transition matrix of the approximated system is identified to cause most of the computational cost. Different measures to increase computational efficiency of the semi-discretization method are proposed. For systems with piecewise defined delay terms as they occur, e.g., in interrupted cutting processes, a predefined non-equidistant discretization scheme is introduced which significantly reduces computational cost and, at the same time, increases accuracy of the method. The proposed measures are demonstrated by means of a 2-dof milling process.  相似文献   

8.
This paper aims at mitigating regenerative chatter in plunge grinding. To begin with, a dynamic model is proposed to investigate grinding dynamics, where eigenvalue and bifurcation analyses are adopted, respectively, for prediction of grinding stability and chatter. Generally, it is found that most grinding chatter is incurred by subcritical Hopf bifurcation. Compared with supercritical instability, the subcritical generates coexistence of stable and unstable grinding in the stable region and increases chatter amplitude in the chatter region. To avoid these adverse effects of the subcritical instability, bifurcation control is employed, where the cubic non-linearity of the relative velocity between grinding wheel and workpiece is used as feedback. With the increase of feedback gain, the subcritical instability is transformed to be supercritical not only locally but also globally. Finally, the conditionally stable region is completely removed and the chatter amplitude is decreased. After that, to further reduce the chatter amplitude, quench control is used as well. More specifically, an external sinusoid excitation is applied on the wheel to quench the existing grinding chatter, replacing the large-amplitude chatter by a small-amplitude forced vibration. Through the method of multiple scales, the condition for quenching the chatter is obtained.  相似文献   

9.
Complete discretization scheme for milling stability prediction   总被引:1,自引:0,他引:1  
This study presents a Complete Discretization Scheme (CDS) for milling stability prediction. When compared with the Semi-Discretization Method (SDM) and Full-Discretization Method (FDM), the highlight of CDS is that it discretizes all parts of Delay Differential Equation (DDE), including delay term, time domain term, parameter matrices, and most of all the differential term, by using the numerical iteration method, such as Euler’s method, to replace the direct integration scheme used in SDM and FDM, which greatly simplifies the complexity of the discretization iteration formula. The present study mainly provides a numerical framework than a method that can be theoretically used by different numerical methods for solving Ordinary Differential Equation (ODE), such as Euler’s method, Runge–Kutta method, Adam’s multistep methods, etc., in this framework for derivation of iteration formula with corresponding construction of coefficient matrix of iteration formula. This study presented CDS with Euler’s method (CDSEM) for solving the one degree-of-freedom problem (one DOF) and two DOF motion equations, which are usually used as benchmark problems. When compared with SDM and FDM, the benchmark results of one DOF and two DOF milling stability prediction show that CDSEM can obtain acceptable precision in most ranges. The computational efficiency of SDM and FDM was also determined, and the results show that CDS with Euler’s method is faster than FDM. Furthermore, large approximation parameters (small time interval) were selected by SDM and CDSEM, and the results show that CDS has high effectiveness, accuracy, and reliability.  相似文献   

10.
The determination of the stability of systems with time delays is of high importance in many industrial and research applications. In this study, we improve the numerical integration method (NIM) by using the Lagrange form interpolating polynomial to approximate the delayed terms and construct a periodic discrete dynamical map for the damped Mathieu equation with time delays. Hence, we can obtain the Floquet transition matrices without matrix multiplication, which can reduce calculation time when the matrix inversed has a small bandwidth according to the computation based on MATLAB. To compare the calculation efficiency and computational accuracy between the updated and original methods, we compare the stability charts calculated by using three NIM methods for a damped Mathieu equation with multiple delays. To further confirm the efficiency of the presented method, we calculate the stability of the Mathieu equation with distributed delays and time-periodic delays, and then we compare the computational accuracy and calculation time with those of the semi-discretization method.  相似文献   

11.
Due to broadly distributed heterogeneities, the multistep character of the development of random damage in brittle materials or rocks, reflecting the discrete nature of the fracturing process, enables us to compare the diffusion of damages with the percolation phenomenon. Based on a discrete scale hierarchy, the fracturing process leading to material failure is then identified with a second-order phase transition, enabling prediction. In this connection, this paper presents a prediction scheme for the catastrophic failure or the lifetime of highly loaded materials or rocks. An experimental measurement method and a modelling of bi-phase materials or rocks are proposed. Although this scheme is introduced in the context of materials science, it also works in rock for the prediction of large natural earthquakes and some artificially induced earthquakes and rock bursts due to damming and mining. Results with strong forecasting potential explain for the first time the origin of complex critical exponents through a structural parameter.  相似文献   

12.
本文采用描述函数方法分析机床的非线性颤振.以描述函数刻划切削过程复杂的非线性特性,并将非线性振动分析所依赖的复平面推广到三维空间进行稳定性分析。从而求出颤振振幅和颤振频率。该法不仅可揭示切削过程等效刚度系数和等效阻尼系数的变化,而且还可考察各切削参数对颤振频率和振幅的影响.结果表明,描述函数方法是分析机床颤振这个极其复杂的非线性系统的一个有效的手段.  相似文献   

13.
In this article, the stability of a milling process is studied by using a semi-discretization method. The model of the workpiece–tool system includes loss-of-contact effects between the workpiece and the tool and time-delay effects associated with the chip-thickness variation. In addition, feed-rate effects are also considered. The governing system of equations is a non-autonomous, delay-differential system with time-periodic coefficients. Stability of periodic orbits of this system is studied to predict the onset of chatter and numerical evidence is provided for period-doubling bifurcations and secondary Hopf bifurcations. Stability charts generated using the semi-discretization method are found to compare well with the corresponding results obtained through time-domain simulations.  相似文献   

14.
This paper presents a numerical simulation for application of the Kalman filter finite element method. The Kalman filter is employed frequently for the solution of time series analysis including observation and system noises. Applying the Kalman filter to the finite element method, the present method is capable of the estimation in time and space directions. In this method, the matrix generated by the finite element method is applied to the state transition matrix. Using the Kalman filter finite element method, the characteristics of both the Kalman filter and the finite element method can be strengthened. In this paper, the state transition matrix is based on the shallow water equations which are approximated by the finite element method. This method can estimate the tidal current not only in time but also in space directions.  相似文献   

15.
本文旨在以矩阵的相似变换理论为基础,以电子计算机为工具,提供一种无需求解离散?矩阵方程,而直接由系统矩阵来构造离散时间系统?函数和判定系统稳定性的方法.  相似文献   

16.
The purpose of this paper is to present a new method for constructing Liapunov function and determining the stability of discrete time systems with a computer on the basis of the similarity transformation theory by directly applying the system matrix of the system under discussion instead of solving the discrete Liapunov's matrix equation.  相似文献   

17.
This paper introduces a sparse matrix discrete interpolation method to effectively compute matrix approximations in the reduced order modeling framework. The sparse algorithm developed herein relies on the discrete empirical interpolation method and uses only samples of the nonzero entries of the matrix series. The proposed approach can approximate very large matrices, unlike the current matrix discrete empirical interpolation method, which is limited by its large computational memory requirements. The empirical interpolation indices obtained by the sparse algorithm slightly differ from the ones computed by the matrix discrete empirical interpolation method as a consequence of the singular vectors round‐off errors introduced by the economy or full singular value decomposition (SVD) algorithms when applied to the full matrix snapshots. When appropriately padded with zeros, the economy SVD factorization of the nonzero elements of the snapshots matrix is a valid economy SVD for the full snapshots matrix. Numerical experiments are performed with the 1D Burgers and 2D shallow water equations test problems where the quadratic reduced nonlinearities are computed via tensorial calculus. The sparse matrix approximation strategy is compared against five existing methods for computing reduced Jacobians: (i) matrix discrete empirical interpolation method, (ii) discrete empirical interpolation method, (iii) tensorial calculus, (iv) full Jacobian projection onto the reduced basis subspace, and (v) directional derivatives of the model along the reduced basis functions. The sparse matrix method outperforms all other algorithms. The use of traditional matrix discrete empirical interpolation method is not possible for very large dimensions because of its excessive memory requirements. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
离心式风机气流系统离散频率声学特性及计算方法的研究   总被引:1,自引:1,他引:0  
本文利用稳态气流的变更方程,建立了风机叶轮的转移矩阵。这是多级叶轮气流系统离散性频率声学特性的一个基衣公式。为了讨论离散性频率噪声,本文提出了多叶叶道流速激发的概念和计算公式。与风机负荷的波动相关,风机转子的角速度变化及相伴的低频拍振是不可避免的。本文还推荐了一些降低拍振振幅的措施。  相似文献   

19.
Cutting process of composite materials: An experimental study   总被引:1,自引:0,他引:1  
This paper focuses on experimental research of milling process of the epoxide-polymer matrix composite reinforced carbon fibers (EPMC—carbon composite). An influence of two control parameters, namely feed and rotational speed, on cutting forces is investigated. The experiment is conducted on a CNC machine with feed rate ranging from 200 to 720 mm/min and rotational speed from 2000 to 8000 rpm. The experimental time series are analysed by means of the delay coordinates method in order to find stable cutting regions and to recognize the kind of behaviour. Using this information, a new model for the cutting forces is proposed that can be used to build a new regenerative vibration model for EPMC milling.  相似文献   

20.
水泥砂浆界面相弹性常数的反演计算   总被引:1,自引:0,他引:1  
为了计算水泥砂浆界面过渡区的弹性常数,采用广义自洽方法(GSCM),根据水泥砂浆内部的微细观结构,建立了由水泥浆基体、岩石离散夹杂(骨料)、界面过渡区(ITZ)和有效弹性材料组成的四相复合材料模型.推导了界面相的体积模量和剪切模量方程.利用已知水泥砂浆材料的实验数据,计算了界面相的弹性常数.发现界面相剪切模量约为水泥浆基体剪切模量的50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号