首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

2.
In this paper, we state and prove a new formula expressing explicitly the integratives of Bernstein polynomials (or B‐polynomials) of any degree and for any fractional‐order in terms of B‐polynomials themselves. We derive the transformation matrices that map the Bernstein and Legendre forms of a degree‐n polynomial on [0,1] into each other. By using their transformation matrices, we derive the operational matrices of integration and product of the Bernstein polynomials. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present a method to solve nonlinear Volterra-Fredholm-Hammerstein integral equations in terms of Bernstein polynomials. Properties of these polynomials and operational matrix of integration together with the product operational matrix are first presented. These properties are then utilized to transform the integral equation to a matrix equation which corresponds to a system of nonlinear algebraic equations with unknown Bernstein coefficients. The method is computationally very simple and attractive and numerical examples illustrate the efficiency and accuracy of the method.  相似文献   

4.
In this paper, first, Bernstein multi-scaling polynomials(BMSPs) and their properties are introduced. These polynomials are obtained by compressing Bernstein polynomials(BPs) under sub-intervals. Then, by using these polynomials, stochastic operational matrices of integration are generated. Moreover, by transforming the stochastic integral equation to a system of algebraic equations and solving this system using Newton's method, the approximate solution of the stochastic It?-Volterra integral equation is obtained. To illustrate the efficiency and accuracy of the proposed method, some examples are presented and the results are compared with other methods.  相似文献   

5.
In this paper we study the numerical solution of singular Abel–Volterra integro-differential equations, which are typical for the theory of anomalous diffusion and viscoelastic delayed stresses. The proposed method is based on application of the operational and almost operational matrices to derivatives and integrals in a vicinity of the kernel’s singular point. As examples, two orthonormal systems are considered: Bernstein polynomials and Legendre wavelets. The methods convert the singular integro-differential equation in to a system of algebraic equations that implies two advantages: (i) one does not need to introduce artificial smoothing factors into the singular integrand and (ii) the direct estimation of computational error around singular point is possible via the obtained explicit expression. The examples of numerical solution and their discussion are presented.  相似文献   

6.
In the spectral Petrov‐Galerkin methods, the trial and test functions are required to satisfy particular boundary conditions. By a suitable linear combination of orthogonal polynomials, a basis, that is called the modal basis, is obtained. In this paper, we extend this idea to the nonorthogonal dual Bernstein polynomials. A compact general formula is derived for the modal basis functions based on dual Bernstein polynomials. Then, we present a Bernstein‐spectral Petrov‐Galerkin method for a class of time fractional partial differential equations with Caputo derivative. It is shown that the method leads to banded sparse linear systems for problems with constant coefficients. Some numerical examples are provided to show the efficiency and the spectral accuracy of the method.  相似文献   

7.
In this work, we present a spectral method for recovering an unknown time-dependent lower-order coefficient and unknown wave displacement in a nonlinear Klein–Gordon equation with overdetermination at a boundary condition. We apply the initial and boundary conditions to construct the satisfier function and use this function in a transformation to convert the main problem to a nonclassical hyperbolic equation with homogeneous initial and boundary conditions. Then, we utilize the orthonormal Bernstein basis functions to approximate the solution of the reformulated problem and use a direct technique based on the operational matrices of integration and differentiation of these basis functions together with the collocation technique to reduce the problem to a system of nonlinear algebraic equations. Regarding the perturbed measurements, the method takes advantage of the mollification method in order to derive stable numerical derivatives. Numerical simulations for solving several test examples are presented to show the applicability of the proposed method for obtaining accurate and stable results.  相似文献   

8.
In this article we propose a numerical scheme to solve the pantograph equation. The method consists of expanding the required approximate solution as the elements of the shifted Chebyshev polynomials. The Chebyshev pantograph operational matrix is introduced. The operational matrices of pantograph, derivative and product are utilized to reduce the problem to a set of algebraic equations. An error analysis is presented which allows the number of polynomials employed in the approximation to be selected in advance for a desired tolerance. Some examples are given to demonstrate the validity and applicability of the new method and a comparison is made with the existing results.  相似文献   

9.
In this paper, a new two‐dimensional fractional polynomials based on the orthonormal Bernstein polynomials has been introduced to provide an approximate solution of nonlinear fractional partial Volterra integro‐differential equations. For this aim, the fractional‐order orthogonal Bernstein polynomials (FOBPs) are constructed, and its operational matrices of integration, fractional‐order integration, and derivative in the Caputo sense and product operational matrix are derived. These operational matrices are utilized to reduce the under study problem to a nonlinear system of algebraic equations. Using the approximation of FOBPs, the convergence analysis and error estimate associated to the proposed problem have been investigated. Finally, several examples are included to clarify the validity, efficiency, and applicability of the proposed technique via FOBPs approximation.  相似文献   

10.
借助闭区间上的连续函数可以用Bernstein 多项式一致逼近这一事实,将多项式对所生成的经典Bezoutian 矩阵和Bernstein Bezoutian 矩阵推广到C [0,1]上函数对所对应的情形,给出了 Bezoutian 矩阵一致逼近形式的定义,并且得到如下结论:给出了经典 Bezoutian 矩阵的 Barnett 型分解公式和三角分解公式的一致逼近形式;提供了经典Bezoutian 矩阵和Bernstein Bezoutian 矩阵的一致逼近形式的两类算法;得到了上述两种矩阵的一致逼近形式中元素间的两个恒等关系式。最后,利用数值实例对恒等关系式进行验证,结果表明两类算法是有效的。  相似文献   

11.
This article proposes a new unconditionally stable scheme to solve one‐dimensional telegraph equation using weighted Laguerre polynomials. Unlike other numerical schemes, the time derivatives in the equation can be expanded analytically based on the Laguerre polynomials and basis functions. By applying a Galerkin temporal testing procedure and using the orthogonal property of weighted Laguerre polynomials, the time variable can be eliminated from computations, which results in an implicit equation. After solving the equation recursively one can obtain the numerical results of telegraph equation by using the expanded coefficients. Some numerical examples are considered to validate the accuracy and stability of this proposed scheme, and the results are compared with some existing numerical schemes.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1603–1615, 2017  相似文献   

12.
An algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.  相似文献   

13.
Fractional calculus is an extension of derivatives and integrals to non-integer orders, and a partial differential equation involving the fractional calculus operators is called the fractional PDE. They have many applications in science and engineering. However not only the analytical solution existed for a limited number of cases, but also the numerical methods are very complicated and difficult. In this paper, we newly establish the simulation method based on the operational matrices of the orthogonal functions. We formulate the operational matrix of integration in a unified framework. By using the operational matrix of integration, we propose a new numerical method for linear fractional partial differential equation solving. In the method, we (1) use the Haar wavelet; (2) establish a Lyapunov-type matrix equation; and (3) obtain the algebraic equations suitable for computer programming. Two examples are given to demonstrate the simplicity, clarity and powerfulness of the new method.  相似文献   

14.
In this paper, we present a numerical method for solving two-dimensional Volterra-Fredholm integral equations of the second kind (2DV-FK2). Our method is based on approximating unknown function with Bernstein polynomials. We obtain an error bound for this method and employ the method on some numerical tests to show the efficiency of the method.  相似文献   

15.
This paper is concerned with obtaining approximate numerical solutions of some classes of integral equations by using Bernstein polynomials as basis. The integral equations considered are Fredholm integral equations of second kind, a simple hypersingular integral equation and a hypersingular integral equation of second kind. The method is explained with illustrative examples. Also, the convergence of the method is established rigorously for each class of integral equations considered here.  相似文献   

16.
We study a numerical method for solving a system of Volterra-renewal integral equations with space fluxes, that represents the Chapman-Kolmogorov equation for a class of piecewise deterministic stochastic processes. The solution of this equation is related to the time dependent distribution function of the stochastic process and it is a non-negative and non-decreasing function of the space. Based on the Bernstein polynomials, we build up and prove a non-negative and non-decreasing numerical method to solve that equation, with quadratic convergence order in space.  相似文献   

17.
In the present paper we study the orthogonal polynomials with respect to a measure which is the sum of a finite positive Borel measure on [0,2π] and a Bernstein–Szegö measure. We prove that the measure sum belongs to the Szegö class and we obtain several properties about the norms of the orthogonal polynomials, as well as, about the coefficients of the expression which relates the new orthogonal polynomials with the Bernstein–Szegö polynomials. When the Bernstein–Szegö measure corresponds to a polynomial of degree one, we give a nice explicit algebraic expression for the new orthogonal polynomials.  相似文献   

18.
In this paper a numerical method for solving the nonlinear age-structured population models is presented which is based on Bernstein polynomials approximation. Operational matrices of integration, differentiation, dual and product are introduced and are utilized to reduce the age-structured population problem to the solution of algebraic equations. The method in general is easy to implement, and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

19.
In this article we propose a numerical scheme to solve the one‐dimensional hyperbolic telegraph equation. The method consists of expanding the required approximate solution as the elements of shifted Chebyshev polynomials. Using the operational matrices of integral and derivative, we reduce the problem to a set of linear algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

20.
In this paper, we develop an efficient matrix method based on two‐dimensional orthonormal Bernstein polynomials (2D‐OBPs) to provide approximate solution of linear and nonlinear weakly singular partial integro‐differential equations (PIDEs). First, we approximate all functions involved in the considerable problem via 2D‐OBPs. Then, by using the operational matrices of integration, differentiation, and product, the solution of Volterra singular PIDEs is transformed to the solution of a linear or nonlinear system of algebraic equations which can be solved via some suitable numerical methods. With a small number of bases, we can find a reasonable approximate solution. Moreover, we establish some useful theorems for discussing convergence analysis and obtaining an error estimate associated with the proposed method. Finally, we solve some illustrative examples by employing the presented method to show the validity, efficiency, high accuracy, and applicability of the proposed technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号