首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Option pricing models are often used to describe the dynamic characteristics of prices in financial markets. Unlike the classical Black–Scholes (BS) model, the finite moment log stable (FMLS) model can explain large movements of prices during small time steps. In the FMLS, the second-order spatial derivative of the BS model is replaced by a fractional operator of order α which generates an α-stable Lévy process. In this paper, we consider the finite difference method to approximate the FMLS model. We present two numerical schemes for this approximation: the implicit numerical scheme and the Crank–Nicolson scheme. We carry out convergence and stability analyses for the proposed schemes. Since the fractional operator routinely generates dense matrices which often require high computational cost and storage memory, we explore three methods for solving the approximation schemes: the Gaussian elimination method, the bi-conjugate gradient stabilized method (Bi-CGSTAB) and the fast Bi-CGSTAB (FBi-CGSTAB) in order to compare the cost of calculations. Finally, two numerical examples with exact solutions are presented where we also use extrapolation techniques to achieve higher-order convergence. The results suggest that the proposed schemes are unconditionally stable and convergent, and the FMLS model is useful for pricing options.  相似文献   

2.
In this paper, we devote ourselves to establishing the unconditionally stable and absolutely convergent classical finite difference Crank‐Nicholson (CN) implicit (CFDCNI) scheme and optimized finite difference CN‐extrapolated implicit (OFDCNEI) scheme containing very few degrees of freedom but holding fully second‐order accuracy for the two‐dimensional viscoelastic wave via the proper orthogonal decomposition technique, analyzing the existence, stability, and convergence of the CFDCNI and OFDCNEI solutions, and using the numerical simulations to verify that the OFDCNEI scheme is far more superior than the CFDCNI scheme.  相似文献   

3.
In this article, we consider Stokes’ first problem for a heated generalized second grade fluid with fractional derivative (SFP-HGSGF). Implicit and explicit numerical approximation schemes for the SFP-HGSGF are presented. The stability and convergence of the numerical schemes are discussed using a Fourier method. In addition, the solvability of the implicit numerical approximation scheme is also analyzed. A Richardson extrapolation technique for improving the order of convergence of the implicit scheme is proposed. Finally, a numerical test is given. The numerical results demonstrate the good performance of our theoretical analysis.  相似文献   

4.
This paper is concerned with the adaptive numerical treatment of stochastic partial differential equations. Our method of choice is Rothe’s method. We use the implicit Euler scheme for the time discretization. Consequently, in each step, an elliptic equation with random right-hand side has to be solved. In practice, this cannot be performed exactly, so that efficient numerical methods are needed. Well-established adaptive wavelet or finite-element schemes, which are guaranteed to converge with optimal order, suggest themselves. We investigate how the errors corresponding to the adaptive spatial discretization propagate in time, and we show how in each time step the tolerances have to be chosen such that the resulting perturbed discretization scheme realizes the same order of convergence as the one with exact evaluations of the elliptic subproblems.  相似文献   

5.
Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. Numerical methods and analysis of stability and convergence of numerical scheme for the variable fractional order partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the space-time variable fractional order diffusion equation on a finite domain. It is worth mentioning that here we use the Coimbra-definition variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation is proposed and then the stability and convergence of the numerical scheme are investigated. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.  相似文献   

6.
In this work we are interested in the numerical approximation of 1D parabolic singularly perturbed problems of reaction-diffusion type. To approximate the multiscale solution of this problem we use a numerical scheme combining the classical backward Euler method and central differencing. The scheme is defined on some special meshes which are the tensor product of a uniform mesh in time and a special mesh in space, condensing the mesh points in the boundary layer regions. In this paper three different meshes of Shishkin, Bahkvalov and Vulanovic type are used, proving the uniform convergence with respect to the diffusion parameter. The analysis of the uniform convergence is based on a new study of the asymptotic behavior of the solution of the semidiscrete problems, which are obtained after the time discretization by the Euler method. Some numerical results are showed corroborating in practice the theoretical results on the uniform convergence and the order of the method.  相似文献   

7.
In this article, a Newton linearized compact finite difference scheme is proposed to numerically solve a class of Sobolev equations. The unique solvability, convergence, and stability of the proposed scheme are proved. It is shown that the proposed method is of order 2 in temporal direction and order 4 in spatial direction. Moreover, compare to the classical extrapolated Crank‐Nicolson method or the second‐order multistep implicit–explicit methods, the proposed scheme is easier to be implemented as it only requires one starting value. Finally, numerical experiments on one and two‐dimensional problems are presented to illustrate our theoretical results.  相似文献   

8.
In this paper, we aim to develop a numerical scheme to price American options on a zero-coupon bond based on a power penalty approach. This pricing problem is formulated as a variational inequality problem (VI) or a complementarity problem (CP). We apply a fitted finite volume discretization in space along with an implicit scheme in time, to the variational inequality problem, and obtain a discretized linear complementarity problem (LCP). We then develop a power penalty approach to solve the LCP by solving a system of nonlinear equations. The unique solvability and convergence of the penalized problem are established. Finally, we carry out numerical experiments to examine the convergence of the power penalty method and to testify the efficiency and effectiveness of our numerical scheme.  相似文献   

9.
In order to compute axisymmetric laminar supersonic flow we use an unsteady implicit finite-difference scheme. This scheme solves numerically either the inviscid Euler equations or the ‘thin-layer’ Navier-Stokes equations. In both cases the scheme leads to large sparse non-linear systems, which can be solved by a genuine iteration process. The convergence of this process is shown and numerical results are given.  相似文献   

10.
In this article, we investigate the stability and convergence of a new class of blended three-step Backward Differentiation Formula (BDF) time-stepping scheme for spatially discretized Navier-Stokes-type system modeling Soret driven convective flows. A Galerkin mixed finite element spatial discretization is assumed, and the temporal discretization is by the implicit blended three-step BDF scheme. The blended BDF scheme is more accurate than the classical second order accurate two-step BDF (BDF2) scheme, yet strongly A-stable. We consider an implicit, linearly extrapolated version of the scheme to improve its efficiency. We present optimal finite element error estimates and prove the scheme is unconditionally stable and convergent. Numerical experiments are presented that compare the scheme to the classical BDF2 scheme.  相似文献   

11.
An inverse problem concerning diffusion equation with source control parameter is considered. Several finite-difference schemes are presented for identifying the control parameter. These schemes are based on the classical forward time centred space (FTCS) explicit formula, and the 5-point FTCS explicit method and the classical backward time centred space (BTCS) implicit scheme, and the Crank–Nicolson implicit method. The classical FTCS explicit formula and the 5-point FTCS explicit technique are economical to use, are second-order accurate, but have bounded range of stability. The classical BTCS implicit scheme and the Crank–Nicolson implicit method are unconditionally stable, but these schemes use more central processor (CPU) times than the explicit finite difference mehods. The basis of analysis of the finite difference equations considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. The results of a numerical experiment are presented, and the accuracy and CPU time needed for this inverse problem are discussed.  相似文献   

12.
The aim of this paper is to derive a numerical scheme for solving stochastic differential equations (SDEs) via Wong-Zakai approximation. One of the most important methods for solving SDEs is Milstein method, but this method is not so popular because the cost of simulating the double stochastic integrals is high. For overcoming this complexity, we present an implicit Milstein scheme based on Wong-Zakai approximation by approximating the Brownian motion with its truncated Haar expansion. The main advantages of this method lie in the fact that it preserves the convergence order and also stability region of the Milstein method while its simulation is much easier than Milstein scheme. We show the convergence rate of the method by some numerical examples.  相似文献   

13.
In this article, we study the convergence analysis for the initial and boundary value problem of parabolic equations on a disk with singular solutions. It is assumed that the exact solution performs singular properties that its derivatives go to infinity at the boundary of the disk. We propose a fully implicit time-stepping numerical scheme. A stretching polynomial-like function with a parameter is used to construct a local grid refinement. Over the nonuniform partition, we combine the Swartztrauber-Sweet scheme and the backward Euler method in spatial and temporal discretization, respectively. We carry out convergence analysis and analyze the effects of the parameter. It is shown that our numerical scheme is of first order accuracy for temporal discretization and of almost second order accuracy for spatial discretization. Numerical experiments are performed to illustrate our analysis results and show that there exists an optimal value for the parameter to obtain a best approximate solution.  相似文献   

14.
In this paper, we numerically analyse a phase-lag model with two temperatures which arises in the heat conduction theory. The model is written as a linear partial differential equation of third order in time. The variational formulation, written in terms of the thermal acceleration, leads to a linear variational equation, for which we recall an existence and uniqueness result and an energy decay property. Then, using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives, fully discrete approximations are introduced. A discrete stability property is proved, and a priori error estimates are obtained, from which the linear convergence of the approximation is derived. Finally, some one-dimensional numerical simulations are described to demonstrate the accuracy of the approximation and the behaviour of the solution.  相似文献   

15.
In this paper, a conservative parallel difference scheme, which is based on domain decomposition method, for 2-dimension diffusion equation is proposed. In the construction of this scheme, we use the numerical solution on the previous time step to give a weighted approximation of the numerical flux. Then the sub-problems with Neumann boundary are computed by fully implicit scheme. What is more, only local message communication is needed in the program. We use the method of discrete functional analysis to give the proof of the unconditional stability and second-order convergence accuracy. Some numerical tests are given to verify the theory results.  相似文献   

16.
In this article, we study numerical approximation for a class of singularly perturbed parabolic (SPP) convection-diffusion turning point problems. The considered SPP problem exhibits a parabolic boundary layer in the neighborhood of one of the sides of the domain. Some a priori bounds are given on the exact solution and its derivatives, which are necessary for the error analysis. A numerical scheme comprising of implicit finite difference method for time discretization on a uniform mesh and a hybrid scheme for spatial discretization on a generalized Shishkin mesh is proposed. Then Richardson extrapolation method is applied to increase the order of convergence in time direction. The resulting scheme has second-order convergence up to a logarithmic factor in space and second-order convergence in time. Numerical experiments are conducted to demonstrate the theoretical results and the comparative study is done with the existing schemes in literature to show better accuracy of the proposed schemes.  相似文献   

17.
空间-时间分数阶对流扩散方程的数值解法   总被引:1,自引:0,他引:1  
覃平阳  张晓丹 《计算数学》2008,30(3):305-310
本文考虑一个空间-时间分数阶对流扩散方程.这个方程是将一般的对流扩散方程中的时间一阶导数用α(0<α<1)阶导数代替,空间二阶导数用β(1<β<2)阶导数代替.本文提出了一个隐式差分格式,验证了这个格式是无条件稳定的,并证明了它的收敛性,其收敛阶为O(ι h).最后给出了数值例子.  相似文献   

18.
In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.  相似文献   

19.
徐海文 《计算数学》2012,34(1):93-102
邻近点算法(PPA)是一类求解凸优化问题的经典算法, 但往往需要精确求解隐式子问题,于是近似邻近点算法(APPA)在满足一定的近似规则下非精确求解PPA的子问题, 降低了求解难度. 本文利用近似规则的历史信息和随机数扩张预测校正步产生了两个方向, 通过随机数组合两个方向获得了一类凸优化的混合下降算法.在近似规则满足的情况下, 给出了混合下降算法的收敛性证明. 一系列的数值试验表明了混合下降算法的有效性和效率性.  相似文献   

20.
A finite difference method for fractional partial differential equation   总被引:1,自引:0,他引:1  
An implicit unconditional stable difference scheme is presented for a kind of linear space–time fractional convection–diffusion equation. The equation is obtained from the classical integer order convection–diffusion equations with fractional order derivatives for both space and time. First-order consistency, unconditional stability, and first-order convergence of the method are proven using a novel shifted version of the classical Grünwald finite difference approximation for the fractional derivatives. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号