首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we consider solving the least squares problem minxb-Tx2 by using preconditioned conjugate gradient (PCG) methods, where T is a large rectangular matrix which consists of several square block-Toeplitz-Toeplitz-block (BTTB) matrices and b is a column vector. We propose a BTTB preconditioner to speed up the PCG method and prove that the BTTB preconditioner is a good preconditioner. We then discuss the construction of the BTTB preconditioner. Numerical examples, including image restoration problems, are given to illustrate the efficiency of our BTTB preconditioner. Numerical results show that our BTTB preconditioner is more efficient than the well-known Level-1 and Level-2 circulant preconditioners.  相似文献   

2.
A modified least squares FE-method suitable e.g. for calculating the ideal fluid flow is presented. It turns out to be essentially more efficient than the conventional least squares method.  相似文献   

3.
A framework and an algorithm for using modified Gram-Schmidt for constrained and weighted linear least squares problems is presented. It is shown that a direct implementation of a weighted modified Gram-Schmidt algorithm is unstable for heavily weighted problems. It is shown that, in most cases it is possible to get a stable algorithm by a simple modification free from any extra computational costs. In particular, it is not necessary to perform reorthogonalization.Solving the weighted and constrained linear least squares problem with the presented weighted modified Gram-Schmidt algorithm is seen to be numerically equivalent to an algorithm based on a weighted Householder-likeQR factorization applied to a slightly larger problem. This equivalence is used to explain the instability of the weighted modified Gram-Schmidt algorithm. If orthogonality, with respect to a weighted inner product, of the columns inQ is important then reorthogonalization can be used. One way of performing such reorthogonalization is described.Computational tests are given to show the main features of the algorithm.  相似文献   

4.
Summary In this paper the closeness of the total least squares (TLS) and the classical least squares (LS) problem is studied algebraically. Interesting algebraic connections between their solutions, their residuals, their corrections applied to data fitting and their approximate subspaces are proven.All these relationships point out the parameters which mainly determine the equivalences and differences between the two techniques. These parameters also lead to a better understanding of the differences in sensitivity between both approaches with respect to perturbations of the data.In particular, it is shown how the differences between both approaches increase when the equationsAXB become less compatible, when the length ofB orX is growing or whenA tends to be rank-deficient. They are maximal whenB is parallel with the singular vector ofA associated with its smallest singular value. Furthermore, it is shown how TLS leads to a weighted LS problem, and assumptions about the underlying perturbation model of both techniques are deduced. It is shown that many perturbation models correspond with the same TLS solution.Senior Research Assistant of the Belgian N.F.W.O. (National Fund of Scientific Research)  相似文献   

5.
The variable projection algorithm of Golub and Pereyra (SIAM J. Numer. Anal. 10:413–432, 1973) has proven to be quite valuable in the solution of nonlinear least squares problems in which a substantial number of the parameters are linear. Its advantages are efficiency and, more importantly, a better likelihood of finding a global minimizer rather than a local one. The purpose of our work is to provide a more robust implementation of this algorithm, include constraints on the parameters, more clearly identify key ingredients so that improvements can be made, compute the Jacobian matrix more accurately, and make future implementations in other languages easy.  相似文献   

6.
In least squares problems, it is often desired to solve the same problem repeatedly but with several rows of the data either added, deleted, or both. Methods for quickly solving a problem after adding or deleting one row of data at a time are known. In this paper we introduce fundamental rank-k updating and downdating methods and show how extensions of rank-1 downdating methods based on LINPACK, Corrected Semi-Normal Equations (CSNE), and Gram-Schmidt factorizations, as well as new rank-k downdating methods, can all be derived from these fundamental results. We then analyze the cost of each new algorithm and make comparisons tok applications of the corresponding rank-1 algorithms. We provide experimental results comparing the numerical accuracy of the various algorithms, paying particular attention to the downdating methods, due to their potential numerical difficulties for ill-conditioned problems. We then discuss the computation involved for each downdating method, measured in terms of operation counts and BLAS calls. Finally, we provide serial execution timing results for these algorithms, noting preferable points for improvement and optimization. From our experiments we conclude that the Gram-Schmidt methods perform best in terms of numerical accuracy, but may be too costly for serial execution for large problems.Research supported in part by the Joint Services Electronics Program, contract no. F49620-90-C-0039.  相似文献   

7.
In this work, we study and analyze the regularized weighted total least squares (RWTLS) formulation. Our regularization of the weighted total least squares problem is based on the Tikhonov regularization. Numerical examples are presented to demonstrate the effectiveness of the RWTLS method.  相似文献   

8.
Recent theoretical and practical investigations have shown that the Gauss-Newton algorithm is the method of choice for the numerical solution of nonlinear least squares parameter estimation problems. It is shown that when line searches are included, the Gauss-Newton algorithm behaves asymptotically like steepest descent, for a special choice of parameterization. Based on this a conjugate gradient acceleration is developed. It converges fast also for those large residual problems, where the original Gauss-Newton algorithm has a slow rate of convergence. Several numerical test examples are reported, verifying the applicability of the theory.  相似文献   

9.
This paper provides a modification to the Gauss—Newton method for nonlinear least squares problems. The new method is based on structured quasi-Newton methods which yield a good approximation to the second derivative matrix of the objective function. In particular, we propose BFGS-like and DFP-like updates in a factorized form which give descent search directions for the objective function. We prove local and q-superlinear convergence of our methods, and give results of computational experiments for the BFGS-like and DFP-like updates.This work was supported in part by the Grant-in-Aid for Encouragement of Young Scientists of the Japanese Ministry of Education: (A)61740133 and (A)62740137.  相似文献   

10.
In this article, we develop symmetric block successive overrelaxation (S-block-SOR) methods for finding the solution of the rank-deficient least squares problems. We propose an S2-block-SOR and an S3-block-SOR method for solving such problems and the convergence of these two methods is studied. The comparisons between the S2-block and the S3-block methods are presented with some numerical examples.  相似文献   

11.
Numerical methods for solving linear least squares problems   总被引:6,自引:0,他引:6  
A common problem in a Computer Laboratory is that of finding linear least squares solutions. These problems arise in a variety of areas and in a variety of contexts. Linear least squares problems are particularly difficult to solve because they frequently involve large quantities of data, and they are ill-conditioned by their very nature. In this paper, we shall consider stable numerical methods for handling these problems. Our basic tool is a matrix decomposition based on orthogonal Householder transformations.Reproduction in Whole or in Part is permitted for any Purpose of the United States government. This report was supported in part by Office of Naval Research Contract Nonr-225(37) (NR 044-11) at Stanford University.  相似文献   

12.
A variant of the preconditioned conjugate gradient method to solve generalized least squares problems is presented. If the problem is min (Axb)TW−1(Axb) with ARm×n and WRm×m symmetric and positive definite, the method needs only a preconditioner A1Rn×n, but not the inverse of matrix W or of any of its submatrices. Freund's comparison result for regular least squares problems is extended to generalized least squares problems. An error bound is also given.  相似文献   

13.
Algorithms for the regularization of ill-conditioned least squares problems   总被引:1,自引:0,他引:1  
Two regularization methods for ill-conditioned least squares problems are studied from the point of view of numerical efficiency. The regularization methods are formulated as quadratically constrained least squares problems, and it is shown that if they are transformed into a certain standard form, very efficient algorithms can be used for their solution. New algorithms are given, both for the transformation and for the regularization methods in standard form. A comparison to previous algorithms is made and it is shown that the overall efficiency (in terms of the number of arithmetic operations) of the new algorithms is better.  相似文献   

14.
A linesearch (steplength) algorithm for unconstrained nonlinear least squares problems is described. To estimate the steplength inside the linesearch algorithm a new method that interpolates the residual vector is used together with a standards method that interpolates the sums of squares. Numerical results are reported that point out the advantage with the new steplength estimation method.  相似文献   

15.
A generalized successive overrelaxation method for least squares problems   总被引:5,自引:0,他引:5  
In this paper a new iterative method is given for solving large sparse least squares problems and computing the minimum norm solution to underdetermined consistent linear systems. The new scheme is called the generalized successive overrelaxation (GSOR) method and is shown to be convergent ifA is full column rank. The GSOR method involves a parameter ρ and an auxiliary matrixP. One can choose matrix P so that the GSOR method only involves matrix and vector operations; therefore the GSOR method is suitable for parallel computations. Besides, the GSOR method can be combined with preconditioning techniques, and therefore can be expected to be more effective. This author's work was supported by Natural Science Foundation of Liaoning Province, China.  相似文献   

16.
17.
In this paper we study the semiconvergence of accelerated overrelaxation (AOR) iterative methods for the least squares solution of minimal norm of rank deficient linear systems. Necessary and sufficient conditions for the semiconvergence of the AOR and JOR iterative methods are given. The optimum parameters and the associated convergence factor are derived.  相似文献   

18.
The a posteriori estimate of the errors in the numerical solution of ill-conditioned linear systems with contaminated data is a complicated problem. Several estimates of the norm of the error have been recently introduced and analyzed, under the assumption that the matrix is square and nonsingular. In this paper we study the same problem in the case of a rectangular and, in general, rank-deficient matrix. As a result, a class of error estimates previously introduced by the authors (Brezinski et al., Numer Algorithms, in press, 2008) are extended to the least squares solution of consistent and inconsistent linear systems. Their application to various direct and iterative regularization methods are also discussed, and the numerical effectiveness of these error estimates is pointed out by the results of an extensive experimentation.  相似文献   

19.
Quadratically constrained least squares and quadratic problems   总被引:9,自引:0,他引:9  
Summary We consider the following problem: Compute a vectorx such that Ax–b2=min, subject to the constraint x2=. A new approach to this problem based on Gauss quadrature is given. The method is especially well suited when the dimensions ofA are large and the matrix is sparse.It is also possible to extend this technique to a constrained quadratic form: For a symmetric matrixA we consider the minimization ofx T A x–2b T x subject to the constraint x2=.Some numerical examples are given.This work was in part supported by the National Science Foundation under Grant DCR-8412314 and by the National Institute of Standards and Technology under Grant 60NANB9D0908.  相似文献   

20.
A derivative free iterative method for approximating a solution of nonlinear least squares problems is studied first in Shakhno and Gnatyshyn (Appl Math Comput 161:253–264, 2005). The radius of convergence is determined as well as usable error estimates. We show that this method is faster than its Secant analogue examined in Shakhno and Gnatyshyn (Appl Math Comput 161:253–264, 2005). Numerical example is also provided in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号