首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide semilocal convergence theorems for Newton-like methods in Banach space using outer and generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our Newton-Kantorovich hypotheses differ from earlier ones. Our results can be used to solve undetermined systems, nonlinear least square problems and ill-posed nonlinear operator equations.  相似文献   

2.
In this work, we prove a third and fourth convergence order result for a family of iterative methods for solving nonlinear systems in Banach spaces. We analyze the semilocal convergence by using recurrence relations, giving the existence and uniqueness theorem that establishes the R-order of the method and the priori error bounds. Finally, we apply the methods to two examples in order to illustrate the presented theory.  相似文献   

3.
By using a new technique, namely, a specific way of choosing the indexes of the involved mappings, we introduce a new iterative algorithm for approximating common fixed points of a countable family of multi-valued totally quasi-?-asymptotically nonexpansive mappings and obtain a strong convergence theorem under some suitable conditions. As application, an iterative solution to a system of generalized mixed equilibrium problems is studied. The results extend those of other authors, in which the involved mapping consists of just a single one.  相似文献   

4.
5.
In this paper, we introduce a multiple-step iterative process for approximating a fixed point of nonexpansive mappings in the framework of uniformly smooth Banach spaces and reflexive Banach spaces which have a weakly continuous duality map, respectively. The results presented in this paper improve and extend the corresponding results of announced by many others.  相似文献   

6.
The purpose of this paper is to study the strong convergence of a general iterative scheme to find a common element of the set of common fixed points of a finite family of nonexpansive mappings, the set of solutions of variation inequalities for a relaxed cocoercive mapping and the set of solutions of an equilibrium problem. Our results extend recent results announced by many others.  相似文献   

7.
This work is to propose an iterative method of choice to compute a stable subspace of a regular matrix pencil. This approach is to define a sequence of matrix pencils via particular left null spaces. We show that this iteration preserves a semigroup property depending only on the initial matrix pencil. Via this recursion relationship, we propose an accelerated iterative method to compute the stable subspace and use it to provide a theoretical result to solve the principal square root of a given matrix, both nonsingular and singular. We show that this method can not only find out the matrix square root, but also construct an iterative approach which converges to the square root with any desired order.  相似文献   

8.
A family of eighth-order iterative methods for the solution of nonlinear equations is presented. The new family of eighth-order methods is based on King’s fourth-order methods and the family of sixth-order iteration methods developed by Chun et al. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative. Therefore this family of methods has the efficiency index which equals 1.682. Kung and Traub conjectured that a multipoint iteration without memory based on nn evaluations could achieve optimal convergence order 2n−12n1. Thus we provide a new example which agrees with the conjecture of Kung–Traub for n=4n=4. Numerical comparisons are made to show the performance of the presented methods.  相似文献   

9.
A combination of the hybrid spectral collocation technique and the homotopy analysis method is used to construct an iteration algorithm for solving a class of nonlinear optimal control problems (NOCPs). In fact, the nonlinear two-point boundary value problem (TPBVP), derived from the Pontryagin’s Maximum Principle (PMP), is solved by spectral homotopy analysis method (SHAM). For the first time, we present here a convergence proof for SHAM. We treat in detail Legendre collocation and Chebyshev collocation. It is indicated that Legendre collocation gives the same numerical results with Chebyshev collocation. Comparisons are made between SHAM, Matlab bvp4c generated results and results from literature such as homotopy perturbation method (HPM), optimal homotopy perturbation method (OHPM) and differential transformations.  相似文献   

10.
11.
In this paper, we study the semilocal convergence and R-order for a class of modified Chebyshev-Halley methods for solving non-linear equations in Banach spaces. To solve the problem that the third-order derivative of an operator is neither Lipschitz continuous nor Hölder continuous, the condition of Lipschitz continuity of third-order Fréchet derivative considered in Wang et al. (Numer Algor 56:497–516, 2011) is replaced by its general continuity condition, and the latter is weaker than the former. Furthermore, the R-order of these methods is also improved under the same condition. By using the recurrence relations, a convergence theorem is proved to show the existence-uniqueness of the solution and give a priori error bounds. We also analyze the R-order of these methods with the third-order Fréchet derivative of an operator under different continuity conditions. Especially, when the third-order Fréchet derivative is Lipschitz continuous, the R-order of the methods is at least six, which is higher than the one of the method considered in Wang et al. (Numer Algor 56:497–516, 2011) under the same condition.  相似文献   

12.
In this paper, we propose a new composite iterative method for finding a common point of the set of solutions of an equilibrium problem and the set of fixed points of a countable family of nonexpansive mappings in a Hilbert space. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of solutions of an equilibrium problem and the set of fixed points of a countable family of nonexpansive mappings. Our results improve and extend the corresponding ones announced by many others.  相似文献   

13.
Several iterative methods for maximal correlation problems (MCPs) have been proposed in the literature. This paper deals with the convergence of these iterations and contains three contributions. Firstly, a unified and concise proof of the monotone convergence of these iterative methods is presented. Secondly, a starting point strategy is analysed. Thirdly, some error estimates are presented to test the quality of a computed solution. Both theoretical results and numerical tests suggest that combining with this starting point strategy these methods converge rapidly and are more likely converging to a global maximizer of MCP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Finding the zeros of a nonlinear equation is a classical problem of numerical analysis which has various applications in many sciences and engineering. In this problem we seek methods that lead to approximate solutions. Sometimes the applications of the iterative methods depended on derivatives are restricted in Physics, chemistry and engineering. In this paper, we propose two iterative formulas without derivatives. These methods are based on the central-difference and forward-difference approximations to derivatives. The convergence analysis shows that the methods are cubically and quadratically convergent respectively. The best property of these schemes are that they are derivative free. Several numerical examples are given to illustrate the efficiency and performance of the proposed methods.  相似文献   

15.
We introduce a new composite iterative scheme by viscosity approximation method for finding a common point of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping. Our results substantially improve the corresponding results of Takahashi and Takahashi [A. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506-515]. Essentially a new approach for finding solutions of equilibrium problems and the fixed points of nonexpansive mappings is provided.  相似文献   

16.
Summary The Chebyshev and second-order Richardson methods are classical iterative schemes for solving linear systems. We consider the convergence analysis of these methods when each step of the iteration is carried out inexactly. This has many applications, since a preconditioned iteration requires, at each step, the solution of a linear system which may be solved inexactly using an inner iteration. We derive an error bound which applies to the general nonsymmetric inexact Chebyshev iteration. We show how this simplifies slightly in the case of a symmetric or skew-symmetric iteration, and we consider both the cases of underestimating and overestimating the spectrum. We show that in the symmetric case, it is actually advantageous to underestimate the spectrum when the spectral radius and the degree of inexactness are both large. This is not true in the case of the skew-symmetric iteration. We show how similar results apply to the Richardson iteration. Finally, we describe numerical experiments which illustrate the results and suggest that the Chebyshev and Richardson methods, with reasonable parameter choices, may be more effective than the conjugate gradient method in the presence of inexactness.This work was supported in part by National Science Foundation Grants DCR-8412314 and DCR-8502014The work of this author was completed while he was on sabbatical leave at the Centre for Mathematical Analysis and Mathematical Sciences Research Institute at the Australian National University, Canberra, Australia  相似文献   

17.
An improvement on a generalized preconditioned Hermitian and skew-Hermitian splitting method (GPHSS), originally presented by Pan and Wang (J. Numer. Methods Comput. Appl. 32, 174–182, 2011), for saddle point problems, is proposed in this paper and referred to as IGPHSS for simplicity. After adding a matrix to the coefficient matrix on two sides of first equation of the GPHSS iterative scheme, both the number of required iterations for convergence and the computational time are significantly decreased. The convergence analysis is provided here. As saddle point problems are indefinite systems, the Conjugate Gradient method is unsuitable for them. The IGPHSS is compared with Gauss-Seidel, which requires partial pivoting due to some zero diagonal entries, Uzawa and GPHSS methods. The numerical experiments show that the IGPHSS method is better than the original GPHSS and the other two relevant methods.  相似文献   

18.
Local convergence of a secant type iterative method for approximating a solution of nonlinear least squares problems is investigated in this paper. The radius of convergence is determined as well as usable error estimates. Numerical examples are also provided.  相似文献   

19.
In this paper, we introduce a new iterative method of order six and study the semilocal convergence of the method by using the recurrence relations for solving nonlinear equations in Banach spaces. We prove an existence-uniqueness theorem and give a priori error bounds which demonstrates the R-order of the method to be six. Finally, we give some numerical applications to demonstrate our approach.  相似文献   

20.
We study an iterative method with order for solving nonlinear operator equations in Banach spaces. Algorithms for specific operator equations are built up. We present the received new results of the local and semilocal convergence, in case when the first-order divided differences of a nonlinear operator are Hölder continuous. Moreover a quadratic nonlinear majorant for a nonlinear operator, according to the conditions laid upon it, is built. A priori and a posteriori estimations of the method’s error are received. The method needs almost the same number of computations as the classical Secant method, but has a higher order of convergence. We apply our results to the numerical solving of a nonlinear boundary value problem of second-order and to the systems of nonlinear equations of large dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号