首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lagrangian mechanics is extended to the so-called nilpotent Taylor algebra \({\mathbb {T}}\). It is shown that this extension yields a practical computational technique for the evaluation and analysis of the equations of motion of general constrained dynamical systems. The underlying \({\mathbb {T}}\)-algebra utilized herein permits the analysis of constrained dynamical systems without the need for analytical or symbolic differentiations. Instead, the algebra produces the necessary exact derivatives inherently through binary operations, thus permitting the numerical analysis of constrained dynamical systems using only the defining scalar functions (the Lagrangian \({\mathcal {L}}\) and the imposed constraints). The extension of the Lagrangian framework to the \({\mathbb {T}}\)-algebra is demonstrated analytically for a problem of constrained motion in a central field and numerically for the calculation of Lyapunov exponents of N-pendulum systems.  相似文献   

2.
We prove that if \(f:G\rightarrow G\) is a map on a topological graph G such that the inverse limit \(\varprojlim (G,f)\) is hereditarily indecomposable, and entropy of f is positive, then there exists an entropy set with infinite topological entropy. When G is the circle and the degree of f is positive then the entropy is always infinite and the rotation set of f is nondegenerate. This shows that the Anosov-Katok type constructions of the pseudo-circle as a minimal set in volume-preserving smooth dynamical systems, or in complex dynamics, obtained previously by Handel, Herman and Chéritat cannot be modeled on inverse limits. This also extends a previous result of Mouron who proved that if \(G=[0,1]\), then \(h(f)\in \{0,\infty \}\), and combined with a result of Ito shows that certain dynamical systems on compact finite-dimensional Riemannian manifolds must either have zero entropy on their invariant sets or be non-differentiable.  相似文献   

3.
A photographic method is described which gives, upon the superposition of ordinary light- and darkfield isochromatic fringe patterns, a new fringe pattern (mixed field). This mixed-field pattern has fringes at the (N/4 and 3N/4 positions. Use of the mixed-field fringe pattern coupled with the oridinary light- and dark-field patterns permit fringes to be read at theN/4,N/2, 3N/4 andN positions, and thus represents a factor of 2 increase in the number of countable fringes. The method is illustrated on two plane-stress examples, a three-dimensional example, and a case employing birefringent coatings.  相似文献   

4.
We consider an interacting particle system in \(\mathbb {R}^d\) modelled as a system of N stochastic differential equations. The limiting behaviour as the size N grows to infinity is achieved as a law of large numbers for the empirical density process associated with the interacting particle system.  相似文献   

5.
We carry out Direct Numerical Simulation (DNS) of flows in closed straight ducts with complex peripheral shape. To perform the simulations the Navier-Stokes equations in cylindrical coordinates are discretized by a second-order finite difference scheme, and the immersed-boundary technique is used to resolve the flow close to walls of complex shape. The basic geometry is a circular pipe of radius R, with imposed sinusoidal perturbations of the type \(\eta R \sin (N_{w}\theta )\). Simulations by varying N w at fixed η were performed to investigate the effect of the perturbation wavenumber. Additional simulations by fixing N w and varying η also allow to investigate the influence of the amplitude of the wall corrugations. The modifications of the near-wall structures due to change in the shape of the walls are well depicted through contour plots of the radial component of the vorticity. The presence of geometrical disturbances anchors the structures at the locations where curvature changes, and the shape of the structures is strongly linked to the amplitude of the wall corrugation. Our interest is also in understanding the influence of the shape of the surface on wall friction. We were expecting some changes in the profile of the total stress with respect to that of the circular pipe, which instead were not found. This is a first indication that changes in the near-wall region do not affect the outer region, and that Townsend’s similarity hypothesis holds.  相似文献   

6.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

7.
In the present paper, we use the conformal mapping z/c = ζ?2a sin ζ (a, c?const, ζ = u + iv) of the strip {|v| ≤ v 0, |u| < ∞} onto the domain D, which is a strip with symmetric periodic cuts. For the domain D, in the orthogonal system of isometric coordinates u, v, we solve the plane elasticity problem. We seek the biharmonic function in the form F = C ψ 0 + S ψ*0 + x(C ψ 1 ? S ψ 2) + y(C ψ 2 + S ψ 1), where C(v) and S(v) are the operator functions described in [1] and ψ 0(u), …, ψ 2(u) are the desired functions. The boundary conditions for the function F posed for v = ±v 0 are equivalent to two operator equations for ψ 1(u) and ψ 2(u) and to two ordinary differential equations of first order for ψ 0(u) and ψ*0(u) [2]. By finding the functions ψ j (u) in the form of trigonometric series with indeterminate coefficients and by solving the operator equations, we obtain infinite systems of linear equations for the unknown coefficients. We present an efficient method for solving these systems, which is based on studying stable recursive relations. In the present paper, we give an example of analysis of a specific strip (a = 1/4, v 0 = 1) loaded on the boundary v = v 0 by a normal load of intensity p. We find the particular solutions corresponding to the extension of the strip by the longitudinal force X and to the transverse and pure bending of the strip due to the transverse force Y and the constant moment M , respectively. We also present the graphs of normal and tangential stresses in the transverse cross-section x = 0 and study the stress concentration effect near the cut bottom.  相似文献   

8.
This research aims at gaining some physical insight into the problem of scalar mixing, following the time evolution of propagating iso-surfaces, Y (x, t) = constant, where Y (x, t) stands for any scalar field (e.g., species mass fraction or temperature). First, a rigorous kinematic analysis of non-material line, surface and volume elements, related to propagating iso-scalar surfaces, is presented; this formalism is valid for both constant and variable density flows. Time rates of change of the normal distance and volume between two adjacent iso-surfaces and of area elements, rotation rates of lines and surface elements and an evolution equation for the local mean curvature are obtained. Line and area stretch rates, which encompass additive contributions from the flow and the displacement speed (due to diffusion and reaction), are identified as total strain rates, normal and tangential to the iso-surfaces. Volumetric dilatation rates, addition of line plus area stretch rates, include the mass entrainment rate per unit mass into the non-material volume. Flow and added vorticities, the latter due to gradients of the displacement speed, yield the total vorticity, which provides the real angular velocity of lines and surface elements. A 5123 DNS database for the mixing of inert and reactive scalars in a box of forced statistically stationary and homogeneous turbulence of a constant-density fluid is then examined. A strongly segregated scalar field is prescribed as initial condition. A one-step reaction rate with a characteristic chemical time one order of magnitude greater than the Kolmogorov time micro-scale is used. Data are analyzed at 1.051 large-eddy turnover times after initialization of velocity and scalar fields. Mean negative normal (contractive) and positive tangential (stretching) flow strain rates occur over all mass fractions and scalar-gradient magnitudes. However, means of the total normal strain rate, conditional upon mass fraction, scalar-gradient and mean curvature, are positive everywhere and tend to destroy scalar-gradients for small times. Negative conditioned mean total tangential strain rates (area stretch factor) contract local areas, except for large values of scalar-gradients. Conditional averages of total and added enstrophies are almost identical, which implies a negligible contribution of the flow vorticity to the observed rotation of non-material line and surface elements. The added vorticity is exactly tangential to the iso-surfaces, whereas the flow and total ones are predominantly tangential. Flow sources/sinks of the mean curvature transport equation are much smaller than the added contributions; for this particular DNS database, the local mean curvature development is self-induced by spatial changes of the displacement speed.  相似文献   

9.
The structure of autoignition in a mixing layer between fully-burnt or partially-burnt combustion products from a methane-air flame at ? = 0.85 and a methane-air mixture of a leaner equivalence ratio has been studied with transient diffusion flamelet calculations. This configuration is relevant to scavenged pre-chamber natural-gas engines, where the turbulent jet ejected from the pre-chamber may be quenched or may be composed of fully-burnt products. The degree of reaction in the jet fluid is described by a progress variable c (c = taking values 0.5, 0.8, and 1.0) and the mixing by a mixture fraction ξ (ξ = 1 in the jet fluid and 0 in the CH4-air mixture to be ignited). At high scalar dissipation rates, N0, ignition does not occur and a chemically-frozen steady-state condition emerges at long times. At scalar dissipation rates below a critical value, ignition occurs at a time that increases with N0. The flame reaches the ξ = 0 boundary at a finite time that decreases with N0. The results help identify overall timescales of the jet-ignition problem and suggest a methodology by which estimates of ignition times in real engines may be made.  相似文献   

10.
We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by \({N^{\beta-1}V(N^{\beta}.) where }\) where \({\int V \leqslant 0}\). We develop new techniques in treating the N-body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the \({N \rightarrow \infty}\) limit of the N-body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.  相似文献   

11.
The article deals with the motion of an axially symmetric spinning artillery shell in the gravity field under the action of the system of aerodynamic forces and moments adopted in ballistics. As the starting point, the system of differential equations of motion of the shell is taken, which is obtained from the original “accurate” system by its linearization in the variables describing the angular motion of the symmetry axis and by additional linearization in the angle between the velocity vector of the center of mass and the vertical plane (l-system). This article examines the system of differential equations of the translational motion and axial rotation of the shell which describes its modified point-mass trajectory model as applied to l-system (m-system). By small parameter methods, an estimate is obtained for the difference of the solution of l-system with given initial data and the solution of m-system with the same initial data for the variables of translational motion and axial rotation. This analytical evaluation is built in such a way that it corresponds with certain numerical estimates for components of the translational motion and axial rotation. It is observed that, under accepted assumptions, m-system and l-system determine the translational motion of the shell with the same order of the error as compared to the original “accurate” nonlinear system of equations of motion of the shell. But m-system does not contain rapidly oscillating variables describing the angular motion of the symmetry axis, and so its numerical integration requires tens of times less computational resources than the numerical integration of l-system. Numerical simulation data are represented.  相似文献   

12.
For arbitrary polynomial loading and a sufficient finite number of nodal points N, the solution for the 3D Timoshenko beam differential equations is polynomial and given as \({{\varvec \theta} = \sum_{i=1}^N I_i {\varvec \theta}_i}\) for the rotation field and \({{\bf u} = \sum_{i=1}^{N+1} J_i {\bf u}_i}\) for the displacement field, where I i and J i are the Lagrangian polynomials of order N?1 and N, respectively. It has been demonstrated in this work that the exact solution for the displacement field may be also written in a number of alternative ways involving contributions of the nodal rotations including \({{\bf u} = \sum_{i=1}^N I_i \left[ {\bf u}_i + \frac 1 N ( {\varvec \theta} - {\varvec \theta}_i ) \times {\bf R}_i \right]}\), where R i are the beam nodal positions.  相似文献   

13.
In this work, the linear viscoelastic behavior of some low-density polyethylene in the melt is used to obtain their architecture. In this way, the number of branches per molecule and long chain branching (LCB) content is determined. For this purpose, a method based on the molecular dynamics of simple star-shaped molecules is presented. It allows one to infer the topology of an average molecule through a set of 2N c parameters {C n i , the number concentration of a level i} and {M bi , the mass of a segment of level i} representing an irregular Cayley tree with N c levels. The inverse problem uses the complex shear modulus as a function of the frequency data along with a minimization algorithm. Results from the present method are compared with NMR and SEC measurements of the level of branching. It appears that SEC and rheology leads to similar results on the determination of LCB while NMR overestimate the number of branch points per molecule. Moreover, rheology allows one to go further than the basic evaluation of LCB content and shows a picture of the structure of the molecules that is in agreement with the kinetics of free radical polymerization of polyethylene.  相似文献   

14.
A result by Pogorelov asserts that C 1 isometric immersions u of a bounded domain \({S \subset \mathbb R^2}\) into \({\mathbb {R}^3}\) whose normal takes values in a set of zero area enjoy the following regularity property: the gradient \({f := \nabla u}\) is ‘developable’ in the sense that the nondegenerate level sets of f consist of straight line segments intersecting the boundary of S at both endpoints. Motivated by applications in nonlinear elasticity, we study the level set structure of such f when S is an arbitrary bounded Lipschitz domain. We show that f can be approximated by uniformly bounded maps with a simplified level set structure. We also show that the domain S can be decomposed (up to a controlled remainder) into finitely many subdomains, each of which admits a global line of curvature parametrization.  相似文献   

15.
Time irreversibility is a subject of increasing interest in an unbalanced system of various time series. Taking into account dynamic basic concepts, we provide multiscale time irreversibility analysis of financial time series based on segmentation which quantifies the time asymmetry in multiscales and is applied to several different forms of financial time series. Specifically, we adopt four distinct time irreversibility indices—Porta’s, Guzik’s and Ehler’s indices (P%, G% and E) and \(\gamma _{2,1} (k)\), respectively, derived from data segments on various timescales. We investigate the performance of our statistical tests for local financial time series from segmented series system with known time reversal properties and find out that it can help classify the partially representative financial markets finally. Particularly, the smaller the scale factor L is the better the ability to distinguish data. Statistical analysis shows a close relationship between G% and E. On the contrary, the connection between P% and G% or P% and E is not proven. In addition, we define a new metric \(\gamma _{2,1} (k)\) to measure the degree of time irreversibility. By further observing the results of the proposed method for computing the degree of irreversibility of the time series, we confirm that the asymmetry is an inherent property of the financial time series, which can be extended to a wide range of scales. Finally, we apply this method to the recurrence plot and multiscale recurrence quantification analysis, to compare effectiveness of the segmentation method.  相似文献   

16.
We consider the plane problem of fracture mechanics for a compound cylinder. We assume that the sleeve (internal cylinder) is reinforced with negative allowance by the external cylinder and that near the sleeve surface there are N arbitrarily located rectilinear cracks of length 2l k (k = 1, 2, ..., N). A minimax criterion is used to determine the negative allowance in the junction theoretically minimizing the fracture parameters (the stress intensity coefficients) of the compound cylinder. A simplified method for minimizing the fracture parameters of the compound cylinder is considered separately.  相似文献   

17.
The long-time asymptotics is analyzed for all finite energy solutions to a model\(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e?iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ ? m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled\(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.  相似文献   

18.
We study the existence and uniqueness of (locally) absolutely continuous trajectories of a dynamical system governed by a nonexpansive operator. The weak convergence of the orbits to a fixed point of the operator is investigated by relying on Lyapunov analysis. We show also an order of convergence of \(o\left( \frac{1}{\sqrt{t}}\right) \) for the fixed point residual of the trajectory of the dynamical system. We apply the results to dynamical systems associated with the problem of finding the zeros of the sum of a maximally monotone operator and a cocoercive one. Several dynamical systems from the literature turn out to be particular instances of this general approach.  相似文献   

19.
It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter β and on the eccentricity e of the orbit. We consider only the circular case (e = 0) but under the action of a broader family of singular potentials: α-homogeneous potentials, for \(\alpha \in (0, 2)\), and the logarithmic one. It turns out indeed that the Lagrangian circular orbit persists also in this more general setting. We discover a region of linear stability expressed in terms of the homogeneity parameter α and the mass parameter β, then we compute the Morse index of this orbit and of its iterates and we find that the boundary of the stability region is the envelope of a family of curves on which the Morse indices of the iterates jump. In order to conduct our analysis we rely on a Maslov-type index theory devised and developed by Y. Long, X. Hu and S. Sun; a key role is played by an appropriate index theorem and by some precise computations of suitable Maslov-type indices.  相似文献   

20.
In three-dimensional Euclidean space let S be a closed simply connected, smooth surface (spheroid). Let \(\hat n\) be the outward unit normal to S, ▽ S the surface gradient on S, I S the metric tensor on S, gij the four covariant components of I S (i,j = 1, 2), h ij the four covariant components of -\(\hat n\)xI S , and D i covariant differentiation on S. It is well known that for any tangent vector field u on S there exist scalars ? and ψ on S, unique to within additive constants, such that \(u = \nabla _s \varphi - \hat n \times \nabla _s \psi \); the covariant components of u are \(u_i = D_i \varphi + h_i^j D_j \psi \). This theorem is very useful in the study of vector fields in spherical coordinates. The present paper gives an analogous theorem for real second-order tangent tensor fields F on S: for any such F there exist scalar fields H, L, M, N such that the covariant components of F are
$$F_{ij} = H h{}_{ij} + Lg_{ij} + E_{ij} (M,N),$$  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号